

April 15, 2022

Washington State Department of Ecology Eastern Regional Office 4601 North Monroe Street Spokane, WA 99205

Attn: Karin Baldwin and Jenny Filipy

Transmitted via email to: <u>kbal461@ecy.wa.gov</u> and <u>jfil461@ecy.wa.gov</u>

Re: Approval Order Amendment Request Microsoft MWH Data Center Quincy, Washington Landau Project No. 1409014.010

Dear Ms. Baldwin and Ms. Filipy:

Microsoft Corporation (Microsoft) operates a data center campus at 1515 NW Port Industrial Parkway in Quincy, Washington (MWH Data Center) under an Approval Order from the Washington State Department of Ecology (Ecology). This letter and its attachments comprise an Approval Order amendment request prepared by Landau Associates, Inc. on behalf of Microsoft. The MWH Data Center currently operates under Ecology Approval Order No. 20AQ-E005 (MWH Approval Order).

Operating limitation 3.a of the MWH Approval Order requires that all generators consume diesel fuel equivalent to on-road specification No. 2 distillate fuel oil (less than 0.00150 weight percent [15 parts per million] sulfur). Microsoft requests permission from Ecology to use renewable diesel fuel to power the generators at the MWH Data Center in place of petroleum-based diesel fuel. A certificate of analysis for REG-9000 renewable hydrocarbon diesel (RHD) fuel is provided as Attachment 1. The terms RHD and hydro-treated vegetable oil (HVO) fuel are used in this application interchangeably.

All permitted generators at the MWH Data Center are Caterpillar (CAT) models. CAT has indicated that HVO fuel is considered a "drop in" replacement for petroleum-based diesel fuel and is approved for use in CAT engines. CAT provided a letter (Attachment 2) indicating that HVO renewable fuel can be used to fuel CAT engines with comparable or lower emissions than that of the same engine model running on petroleum-based diesel fuel. CAT has stated that no change is required to potential site variation (PSV) emissions data based on the use of HVO.

Microsoft has tested RHD fuel at a data center facility outside of Washington state. Emissions were tested in a side-by-side comparison of petroleum-based ultra-low sulfur diesel (ULSD) and RHD. The results of that test show that emissions associated with RHD are similar and in some cases lower than emissions associated with ULSD. Due to the use of test methods that are not comparable to methods used by CAT to develop PSV data in a factory setting, the results of this study are not directly

applicable to emission rates associated with the MWH facility. The study is provided for informational purposes only in Attachment 3.

Microsoft plans to begin using RHD fuel at the MWH facility as soon as approval is granted, or as early as June 2022. A Notice of Construction Application Form is provided in Attachment 4.

Please contact me if you have any comments or questions about this request. Thank you for your time and consideration of this request.

Respectfully submitted,

LANDAU ASSOCIATES, INC.

MB

Mark Brunner Senior Associate

AEM/MWB/ccy P:\1409\014\R\Approval Order Amendment Request - April 2022\Landau_MWH Renewable Fuel Approval Request_cvrltr - 04-15-22.docx

cc: Sid Janga, Microsoft

Attachments:

- 1: Caterpillar Certificate of Analysis for REG-9000 Renewable Hydrocarbon Diesel Fuel
- 2: Caterpillar Letter re: Engine Emissions from Renewable/Alternative Fuels
- 3: Results of Microsoft Renewable Hydrocarbon Diesel Study
- 4: Notice of Construction Application Form

ATTACHMENT 1

Caterpillar Certificate of Analysis for REG-9000 Renewable Hydrocarbon Diesel Fuel

Renewable Hydrocarbon Diesel Certificate of Analysis

202009256022 COA

Lot Number: 750-200925-T6022 **Product Type: Renewable Hydrocarbon Diesel**

Analysis of REG-9000/RHD					
Property	Value ASTM D975 No. 2-D Limit REG-9000 [®] Limit*		Units	Test Method (current revision)	
Cloud point:	-11	Report	Report	°C	D5771
Water & Sediment:	<0.05	0.05, max	0.05, max	% volume	D2709
Conductivity:	60	25, min	25, min	pS/m	D2624
Appearance:	Clear & Bright	Clear & Bright	Clear & Bright	N/A	D4176, Procedure 1
API Gravity @ 60°F:	49.3	N/A	Report	N/A	D4052
Specific gravity @ 60°F:	0.7827	N/A	Report	N/A	D4052
Flash point:	65.1	52, min	52, min	°C	D93A
Total Sulfur:	<1	15, max	2, max	ppm (mg/kg)	D5453
Ramsbottom Carbon:	0.05	0.35, max	0.35, max	% mass	D524
Ash:	<0.001	0.01	0.01	% mass	D482
Kinematic Viscosity at 40 °C:	3.2	1.9 – 4.1	1.9 – 4.1	mm²/sec	D445
Copper Corrosion (3 hrs at 50 °C):	1a	No. 3	No. 1b	N/A	D130
Distillation Temperature, at 90%:	301	282 - 338	282 – 338	°C	D86
Cetane Index:	94	40, min	65, min	N/A	D4737, Procedure A

Notes:

1. ASTM D1319 test detection limits for Aromatics is 5-99 % volume, since REG Geismar's renewable diesel is lower than 5 % volume, this testing was discontinued in the REG Geismar lab

2. Based on a customer's purchase requirements, an optional lubricity additive may be injected into the RHD at the time of shipment to bring the lubricity to < 520 microns

3. This product conforms to the most recent version of ASTM D975

Prepared by: Keith Gill Name

Title

Lab Supervisor

09/25/2020 Geismar, LA Location

Date

ATTACHMENT 2

Caterpillar Letter re: Engine Emissions from Renewable/Alternative Fuels

CATERPILLAR®

Electric Power Division P.O. Box 610- AC6109 Mossville, IL 61552

6/28/2021

Mycah Gambrell-Ermak Energy & Sustainability Division,

RE: Regarding Caterpillar engine emissions from renewable/alternative fuels

Ms. Gambrell-Ermak,

This letter conveys our emissions experience with Hydrotreated Vegetable Oil (HVO) renewable fuel. Based on our scientific judgment, the chemical attributes of HVO as a fuel, general experience, and available test data, emissions from Caterpillar engines running on a HVO fuel should be comparable, if not lower, to that of the same engine model running on a petroleum diesel. Any given HVO fuel would be expected to meet the fuel specifications prescribed in Caterpillar Commercial Engine Fluid Recommendations (SEBU6251).

Based on the above, HVO fuel-fired Caterpillar engine emissions are expected to be the same or lower than diesel fuel-fired Caterpillar engine emissions provided in Caterpillar's "rated speed potential site variation emissions data (PSV)." PSV data should be used for onsite performance testing validation.

Sincerely,

Even V. Hadgen

Evan Hodgen Electric Power Technical Sales Support Manager Caterpillar Inc. (765)448-2645 Hodgen_Evan@cat.com

ATTACHMENT 3

Results of Microsoft Renewable Hydrocarbon Diesel Study

CATERPILLAR®

HVO RD99 Testing on Caterpillar C175-16

HVO (RD99) fuel testing on Caterpillar C175-16 Operational and Performance Test Engine Emissions and Load Comparisons

Test Date: November 5 & 6, 2020 Type of Test: Transient Response Test / Load Test / Emissions Testing

> Project Number: EP03524 Engine Serial Number: TB800180 Generator Serial Number: G7J06324

> > Engine Model: C175-16 Max Power: 3140 KW Voltage: 480 Volts Current: 3975 Amps

Summary of Test Results for Diesel vs. RD99 Fuel

The following report encompasses results from a series of tests used for evaluation of exhaust emissions and performance of HVO C175-16 Generator Set using #2 Diesel and Alternative RD99 Fuel. The transient response test results demonstrate that the Genset is able to pick up the 0 to100% block load and stabilize voltage and frequency in 6.54 seconds on #2 ULSD Fuel and 7.67 Seconds on RD99 Fuel.

Transient response and Emissions load test were conducted on a C175-16 genset rated at 480V 60Hz 0.95pf 3100kW without fan, 3000kW with engine mounted fan. The testing was conducted in a test cell in Griffin, GA at the YES facility, overseen by Caterpillar, with the purpose of comparing genset perform during transient load application and emissions on both diesel and RD99 fuel. The full set of test data was provided to the client for their records. Below is a high-level summary of the results including a reduced data set. The requirements for the RD99 fuel specification were determined during meetings between Caterpillar, client, and the fuel vendor and is documented outside of this summary of results.

Transient Response

Testing indicated that there was not a significant difference in genset transient response performance between the two fuels. Despite RD99 having a lower energy content, the engine fuel system was capable of dynamically adjusting flow rates to provide a similar transient performance. Operation on RD99 should not negatively impact operation during load acceptance. A table with the comparison at each load step is provided in Appendix A.

Emissions Data

Testing was conducted on both fuels for one hour at each 25%, 50% and 75% load and for 3 hours at 100% load. RD99 did show a reduction in PM and CO across all load steps. A reduction of NOx was experienced at part load steps, but the 100% load point was essentially the same between both fuels. A table with the comparison at each load point is provided in Appendix B.

Engine Oil Sample Analysis

Engine oil sample analysis were performed before and after testing on both fuels. The results of wear metals were consistent with a new engine moving through its break in cycle and did not indicate any areas for concern.

Fuel Sample Analysis

Fuel samples were taken for both fuels and have been provide outside of this summary to document the fuel characteristics.

CATERPILLAR®

Appendix C – Test Procedure

Test Details November 4, 2020 – Yancy CAT test facility

4 hour load run on Diesel 20 hour load run on R99 Transient on both fuels

Emissions data

 Analytes	EPA Method	Run Duration	Number of runs per test
Oxygen (O2)	ЗA	60 Min	1
Nitrogen oxides (NOx)	7E	60 Min	1
Carbon monoxide (CO)	10	60 Min	1
Visual emissions (opacity)	9	60 Min	1

Test Procedure:

The tests, as specified in test procedure provided to the customer, are conducted at Yancey Engineered Solutions Test Laboratory. The Genset is set up in Test Cell 2 with the following temporary connections; 24v Battery, 240 VAC Shore Power, Fuel supply and return.

- 1. Perform Pretest activities for Testing with #2 Diesel Fuel. Obtain Engine Oil and #2 Diesel Fuel Samples for Analysis.
- 2. Perform Transient Tests with #2 Diesel Fuel as per Test procedure. Load Percentages 0-75-0-50-100-50-75-100-75-50-0-100-0.
- 3. Operate the Genset on #2 Diesel Fuel at load percentages 25-50-75-100 for Emissions sampling and data collection.
- 4. Perform Pretest activities for Testing with RD99 Fuel. Obtain Engine Oil Sample for Analysis. Top off Oil Level and Record quantity as necessary.
- 5. Operate the Genset on RD99 Fuel for 14 Hours Continuously at 100 percent load and collect operating data.
- 6. Operate the Genset on RD99 Fuel at load percentages 25-50-75-100 for Emissions sampling and data collection.
- 7. Perform Transient Tests with RD99 Fuel as per Test procedure. Load Percentages 0-75-0-50-100-50-75-100-75-50-0-100-0.
- 8. Operate the Genset on RD99 Fuel for 3 Hours Continuously at 100 percent load and collect operating data.
- 9. Obtain Oil Sample for analysis.

CATERPILLAR®

CATERPILLAR®

Test Instrumentation:

Load bank	Creschic 6.25 Mva Resistive/Reactive.
Computer Software	Caterpillar- Electronic Technician
	Dran View 6 Enterprise
Data Recorder	Dranetz PX5, calibration date: 1/20/2020

Test Fuel:

#2 ULSD Fuel- Test Lab Analysis RD99 Fuel- Test Lab Analysis

Advanced Industrial Resources, Inc.

Test Results

Yancy

Griffin, GA Generator #2 Diesel

			00		10301				
		Units	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Averages
	Genset Load	% of full load	25	50	75	100	100	100	100
	Test Date		05-Nov-20	05-Nov-20	05-Nov-20	05-Nov-20	05-Nov-20	05-Nov-20	05-Nov-20
	Start Time		9:10	10:48	12:10	13:35	14:50	16:10	Runs
	End Time		10:16	11:52	13:14	14:40	15:54	17:15	4, 5, 6
P _m	Pressure of meter gases	inches Hg	30.27	30.30	30.27	30.24	30.21	30.20	30.22
P _s	Pressure of stack gases	inches Hg	30.18	30.20	30.18	30.14	30.11	30.10	30.12
V _{m(std)}	Volume of gas sample	dscf	37.35	39.54	36.09	37.10	36.31	39.26	37.56
V _{w(std),meas}	Meas. volume of water vapor	scf	2.26	2.40	2.17	2.54	2.64	2.59	2.59
B _{ws,meas}	Measured moisture		0.057	0.057	0.057	0.064	0.068	0.062	0.065
B _{ws,theo}	Theoretical max. moisture	dimensionless	1.000	1.000	1.000	1.000	1.000	1.000	1.000
B _{ws,act}	Actual moisture		0.057	0.057	0.057	0.064	0.068	0.062	0.065
M_d	Mol. Wt. Of gas at DGM	lb./lbmole	29.48	29.50	29.59	29.66	29.66	29.65	29.66
M _s	Mol. Wt. Of gas at stack	lb./lbmole	28.83	28.85	28.93	28.92	28.87	28.93	28.91
V _s	Velocity of stack gas	ft./sec	42.42	85.13	96.59	119.90	120.96	121.60	120.82
A _n	Area of nozzle	ft^2	0.000491	0.000289	0.000241	0.000218	0.000218	0.000218	0.000218
A _s	Area of stack	ft ²	3.14	3.14	3.14	3.14	3.14	3.14	3.14
Gas Stream	m Flow Rates		- 006	16046	10.005	22 (24			
Q a	Vol. Flow rate of actual gas	ctm	7,996	16,046	18,207	22,601	22,800	22,921	22,774
Q _w	Vol. Flow rate of wet gas	scfm	4,124	7,502	8,328	9,908	9,878	9,989	9,925
Q _w	Vol. Flow rate of wet gas	scfh	247,424	450,104	499,686	594,472	592,702	599,366	595,513
Q _{sd}	Vol. Flow rate of dry gas	dscfm	3,889	7,072	7,857	9,273	9,210	9,371	9,285
I	Isokinetic sampling ratio	percent	102.5	101.5	100.0	96.1	94.7	100.6	97.1
Process Da	ata	LID	1.100	0.140	2.1.51	4.150	4.1.60	4.166	
P (product input)	Process	HP	1,126	2,148	3,151	4,159	4,160	4,166	4,162
P (heat input)	Fuel firing rate	MMBtu/hr	9.8	18.0	23.8	31.3	31.1	31.0	31.1
Gas Stream	m Particulate Concentra	tions Method	5	5.16	7.02	0.02	12.01	2.((0.17
с _{РМ}	Conc. Of PM in dry stack gas	mg/dscm	34.99	5.10	7.02	8.93	12.91	2.00	0.00257
C _{PM}	Conc. Of PM in dry stack gas	gr/dsci	0.02402	0.00225	0.00307	0.00390	0.00364	0.00116	0.00357
Particulate	e Matter Mass Rates Me	thod 5	0.801	0.127	0.207	0.210	0.445	0.003	0.283
L _{PM} Г	Emission rate of PM	g/HP hr	0.323	0.137	0.207	0.310	0.443	0.093	0.203
L _{PM} Г	Emission rate of PM	g/III -III lb / MMBtu	0.0820	0.029	0.030	0.000	0.049	0.010	0.031
Cos Stroop	m Porticulato Concontra	tions Mothod	202	0.0070	0.0087	0.0077	0.0145	0.0050	0.0091
Gas Sti cal	Conc. Of PM in dry stack gas	mg/dscm	17.06	21.35	18.15	24.04	18.67	9.04	17.25
ср <u>м</u> Сруг	Conc. Of PM in dry stack gas	gr/dscf	0.00745	0.00932	0.00793	0.01050	0.00816	0.00395	0.00753
CPM Particulat	e Matter Mass Rates Me	thod 202	0.007 15	0.00752	0.00775	0.01050	0.00010	0.00375	0.00755
Em	Emission rate of PM	lb/hour	0.249	0.565	0.534	0.835	0.644	0.317	0.599
	Emission rate of PM	g/HP-hr	0.100	0.119	0.077	0.091	0.070	0.035	0.065
	Emission rate of PM	lb / MMBtu	0.025	0.031	0.022	0.027	0.021	0.010	0.0192
Gas Stream	n Particulate Concentra	tions Methods	5 & 202	ļ				4	
Срм	Conc. Of PM in dry stack gas	mg/dscm	72.06	26.50	25.17	32.96	31.59	11.70	25.42
Срм	Conc. Of PM in dry stack gas	gr/dscf	0.0315	0.0116	0.0110	0.0144	0.0138	0.0051	0.0111
Particulat	e Matter Mass Rates Me	thods 5 & 202	2						
E _{PM}	Emission rate of PM	lb/hour	1.05	0.70	0.74	1.14	1.09	0.41	0.88
E _{PM}	Emission rate of PM	g/HP-hr	0.423	0.148	0.107	0.125	0.119	0.045	0.096
E _{PM}	Emission rate of PM	lb / MMBtu	0.1075	0.0389	0.0311	0.0366	0.0350	0.0132	0.0283
Sulfur Dio	xide Concentrations Me	thod 6C		•				•	
c _{SO2}	Conc. of SO ₂ in dry stack gas	ppm	9.48	3.4	3.78	5.31	5.38	5.07	5.25
c _{SO2}	Conc. of SO ₂ in dry stack gas	ppm @ 15% O ₂	6.96	2.43	2.30	2.90	2.94	2.82	2.89
C _{SO2}	Conc. of SO ₂ in dry stack gas	mg/dscm	25.23	8.96	10.07	14.13	14.31	13.48	13.98
C _{SO2}	Conc. of SO ₂ in dry stack gas	gr/dscf	0.01102	0.00391	0.00440	0.00617	0.00625	0.00589	0.00610
Sulfur Dio	xide Mass Rates Method	1 6C					· · · ·		
E _{SO2}	Emission rate of SO ₂	lb/hour	0.37	0.24	0.30	0.49	0.49	0.47	0.49
E _{SO2}	Emission rate of SO ₂	g/HP-hr	0.148	0.050	0.043	0.054	0.054	0.052	0.053
Eson	Emission rate of SO ₂	lb / MMBtu	0.0376	0.0132	0.0124	0.0157	0.0159	0.0153	0.0156

Advanced Industrial Resources, Inc.

Test Results

Yancy

Griffin, GA Generator #2 Diesel

		The 4	Dum 1	Drum 2	Dum 2	Drum 4	D 5	Durn (A
r	Concet Load	Units	25	KUN 2	Kun 3	KUN 4	100	100	Averages
	Genset Load	% of 1011 10au	23 05 Nov 20	50 05 Nov 20	7.5 05 Nov 20	100 05 New 20	100 05 New 20	100 05 Nev 20	100 05 Nov 20
	Test Date Start Time		03-100-20	10:49	12:10	12:25	14.50	16:10	05-IN0V-20 D-ma
	Start Time		9:10	10:48	12:10	13:33	14:50	10:10	Runs
	End Time		10:10	11.52	15:14	14:40	15:54	17:15	4, 5, 6
Nitrogen C	Dxides Concentrations M	ethod 7E	510.5	270 ((20.0	800.0	074.0	955 4	072.2
c _{NOx}	Conc. of NO _x in dry stack gas	ppm	510.5	270.6	620.9	890.0	874.2	855.4	8/3.2
c _{NOx}	Conc. of NO _x in dry stack gas	ppm @ 15% O ₂	3/4.6	195.4	3/7.7	486.6	4/7.1	4/6.1	480.0
c _{NOx}	Conc. of NO _x in dry stack gas	mg/dscm	9/6.4	517.6	1187.6	1702.3	16/2.0	1636.0	1670.1
C _{NOx}	Conc. of NO _x in dry stack gas	gr/dscf	0.426	0.226	0.519	0.743	0.730	0.715	0.729
Nitrogen C	Dxides Mass Rates Metho	od 7E	14.0	10.7	25.0	50.1	67.7	57.4	70 1
E _{NOx}	Emission rate of NO _x	Ib/hour	14.2	13.7	35.0	59.1	57.7	57.4	58.1
E _{NOx}	Emission rate of NO _x	g/HP-hr	5.73	2.90	5.03	6.33	6.29	6.25	6.29
E _{NOx}	Emission rate of NO _x	lb / MMBtu	1.46	0.76	1.47	1.89	1.85	1.85	1.87
Carbon Mo	onoxide Concentrations	Method 10	2 6 0 4	<u> </u>		= 0.6		67.0	
c _{co}	Conc. of CO in dry stack gas	ppm	360.4	89.2	116.1	78.6	74.6	65.3	72.8
c _{co}	Conc. of CO in dry stack gas	ppm @ 15% O ₂	264.5	64.4	70.6	43.0	40.7	36.3	40.0
c _{co}	Conc. of CO in dry stack gas	mg/dscm	419.6	103.8	135.2	91.5	86.8	76.0	84.8
c _{CO}	Conc. of CO in dry stack gas	gr/dscf	0.1833	0.0454	0.0590	0.0399	0.0379	0.0332	0.0370
Carbon M	onoxide Mass Rates Met	hod 10							
E _{CO}	Emission rate of CO	lb/hour	6.11	2.75	3.98	3.18	3.00	2.67	2.95
E _{CO}	Emission rate of CO	g/HP-hr	2.46	0.58	0.57	0.35	0.33	0.29	0.32
E _{CO}	Emission rate of CO	lb / MMBtu	0.626	0.152	0.167	0.102	0.096	0.086	0.095
Total Hyd	rocarbon Concentrations	(including me	ethane) Metho	od 25A					
с _{тнс}	THC concentration (as methane)	ppm	12.20	5.63	2.04	2.48	2.15	3.15	2.59
с _{тнс}	THC concentration (as methane)	ppm @ 15% O_2	8.95	4.06	1.24	1.35	1.17	1.75	1.43
с _{тнс}	THC concentration (as methane)	mg/dscm	8.11	3.74	1.36	1.65	1.43	2.09	1.72
с _{тнс}	THC concentration (as methane)	gr/dscf	0.00354	0.00164	0.00059	0.00072	0.00062	0.00091	0.00075
Total Hydi	rocarbon Mass Rates (ind	cluding metha	ne) Method 2	5A					
E _{THC}	THC emission rate (as methane)	lb/hour	0.1182	0.0992	0.0400	0.0572	0.0493	0.0735	0.0600
E _{THC}	THC emission rate (as carbon)	lb/hour	0.0886	0.0744	0.0300	0.0429	0.0370	0.0551	0.0450
E _{THC}	THC emission rate (as carbon)	lb / MMBtu	0.0121	0.0055	0.0017	0.0018	0.0016	0.0024	0.0019
Methane C	Concentrations Method 2	5A							
C _{Methane}	CH ₄ concentration (as methane)	ppm	1.57	0.87	1.02	0.77	0.71	0.72	0.73
CMethane	CH ₄ concentration (as methane)	ppm @ 15% O ₂	1.15	0.63	0.62	0.42	0.39	0.40	0.40
CMethane	CH ₄ concentration (as methane)	mg/dscm	1.04	0.58	0.68	0.51	0.47	0.48	0.49
CMethane	CH ₄ concentration (as methane)	gr/dscf	0.00046	0.00025	0.00030	0.00022	0.00021	0.00021	0.00021
Methane N	Aass Rates Method 25A	6							
E _{Methane}	CH ₄ emission rate (as methane)	lb/hour	0.0152	0.0153	0.0199	0.0178	0.0163	0.0167	0.0169
E _{Methane}	CH4 emission rate (as carbon)	lb/hour	0.0114	0.0115	0.0149	0.0134	0.0122	0.0125	0.0127
Emethane	CH4 emission rate (as carbon)	lb / MMBtu	0.001168	0.000848	0.000836	0.000570	0.000525	0.000538	0.000544
Ethane Co	ncentrations Method 25/	4							
CEthono	C ₂ H ₆ concentration (as Ethane)	 ppm	< 0.0502	< 0.0502	< 0.0501	< 0.0505	< 0.0507	< 0.0504	< 0.0506
CEthono	C ₂ H ₆ concentration (as Ethane)	ppm @ 15% O ₂	< 0.0368	< 0.0362	< 0.0305	< 0.0276	< 0.0277	< 0.0281	< 0.0278
CEthons	C ₂ H ₆ concentration (as Ethane)	mg/dscm	< 0.0627	< 0.0627	< 0.0627	< 0.0632	< 0.0634	< 0.0630	< 0.0632
	C ₂ H ₆ concentration (as Ethane)	gr/dscf	< 0.000027	< 0.000027	< 0.000027	< 0.000028	< 0.000028	< 0.000028	< 0.000028
Ethane Ma	ass Rates Method 25A	5174501	10.000027	10.000027	10.000027	10.000020	10.000020	10.000020	10,000020
Cau	Coll, emission rate (as Ethane)	lb/hour	< 0.00091	< 0.00166	< 0.00184	< 0.00210	< 0.00210	< 0.00221	< 0.00220
✓Ethane	C H amission rate (as sortion)	lb/hour	< 0.00072	< 0.00100	< 0.00107	< 0.00219	< 0.00219	< 0.00221	
CEthane	C ₂ H ₆ emission rate (as carbon)		< 0.00073	< 0.00133	< 0.00147	< 0.00173	< 0.00173	< 0.00177	< 0.001/5
C _{Ethane}	C ₂ H ₆ emission rate (as carbon)	10 / MMBtu	< 0.00007	< 0.00009	< 0.00008	< 0.00007	< 0.00007	< 0.00007	< 0.00007
Total Hydi	rocarbon Mass Rates (ex	cluding metha	ne and ethane	e) Method $25A$	A 0.0126	0.0270	0.0220	0.0400	0.0207
E _{THC}	THC emission rate (as carbon)	lb/hour	0.0765	0.0616	0.0136	0.0278	0.0230	0.0408	0.0306
E _{THC}	THC emission rate (as carbon)	g/HP-hr	0.0308	0.0130	0.0020	0.0030	0.0025	0.0044	0.0033

Notes:

1) lb/MMBtu results based on Method 19 Fd factor of 9190 for diesel oil combustion.

2) (<) indicates the result were below the detection limit and value used is the mininally detected value.

Advanced Industrial Resources, Inc. Test Results

Yancy

Griffin, GA C

		Units	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Averages
	Genset Load	% of full load	25	50	75	100	100	100	100
	Test Date		06-Nov-20	06-Nov-20	06-Nov-20	06-Nov-20	06-Nov-20	06-Nov-20	06-Nov-20
	Start Time		7:55	9:28	10:43	11:58	13:12	14:25	Runs
	End Time		9:00	10:31	11:47	13:04	14:17	15:30	4, 5, 6
P _m	Pressure of meter gases	inches Hg	30.26	30.20	30.18	30.17	30.15	30.11	30.14
P _s	Pressure of stack gases	inches Hg	30.16	30.09	30.09	30.07	30.05	30.01	30.04
V _{m(std)}	Volume of gas sample	dscf	38.26	39.85	36.47	40.85	40.46	38.16	39.82
V _{w(std),meas}	Meas. volume of water vapor	scf	2.21	2.54	2.73	2.68	2.92	2.45	2.68
B _{ws,meas}	Measured moisture		0.055	0.060	0.070	0.062	0.067	0.060	0.063
B _{ws,theo}	Theoretical max. moisture	dimensionless	1.000	1.000	1.000	1.000	1.000	1.000	1.000
B _{ws,act}	Actual moisture		0.055	0.060	0.070	0.062	0.067	0.060	0.063
M _d	Mol. Wt. Of gas at DGM	lb./lbmole	29.44	29.36	29.46	29.54	29.58	29.64	29.59
Ms	Mol. Wt. Of gas at stack	lb./lbmole	28.82	28.68	28.66	28.83	28.80	28.94	28.86
v _s	Velocity of stack gas	ft./sec	45.33	85.70	95.71	121.65	121.50	121.94	121.70
A _n	Area of nozzle	ft^2	0.000491	0.000289	0.000241	0.000218	0.000218	0.000218	0.000218
As	Area of stack	ft^2	3.14	3.14	3.14	3.14	3.14	3.14	3.14
Gas Stream	n Flow Rates							-	
Qa	Vol. Flow rate of actual gas	cfm	8,544	16,154	18,041	22,931	22,902	22,986	22,939
$\mathbf{Q}_{\mathbf{w}}$	Vol. Flow rate of wet gas	scfm	4,386	7,597	8,294	10,167	10,086	10,041	10,098
$\mathbf{Q}_{\mathbf{w}}$	Vol. Flow rate of wet gas	scfh	263,182	455,846	497,638	610,029	605,151	602,478	605,886
Q_{sd}	Vol. Flow rate of dry gas	dscfm	4,147	7,142	7,716	9,541	9,407	9,436	9,461
Ι	Isokinetic sampling ratio	percent	98.5	101.3	102.9	102.8	103.3	97.1	101.1
Process Da	ıta								
P (product input)	Process	HP	1,126	2,148	3,133	4,166	4,165	4,166	4,166
P (heat input)	Fuel firing rate	MMBtu/hr	10.9	20.9	25.0	33.2	32.7	31.7	32.5
Gas Stream Particulate Concentrations Method 5									
c _{PM}	Conc. Of PM in dry stack gas	mg/dscm	43.01	2.85	4.77	3.42	3.48	2.51	3.14
c _{PM}	Conc. Of PM in dry stack gas	gr/dscf	0.01879	0.00125	0.00208	0.00150	0.00152	0.00110	0.00137
Particulate	e Matter Mass Rates Me	thod 5							
E _{PM}	Emission rate of PM	lb/hour	0.668	0.076	0.138	0.122	0.122	0.089	0.111
E _{PM}	Emission rate of PM	g/HP-hr	0.269	0.016	0.020	0.013	0.013	0.010	0.012
E _{PM}	Emission rate of PM	lb / MMBtu	0.0615	0.0036	0.0055	0.0037	0.0037	0.0028	0.0034
Gas Stream	n Particulate Concentra	tions Method	202						
c _{PM}	Conc. Of PM in dry stack gas	mg/dscm	9.88	10.68	15.15	8.34	11.00	12.96	10.77
с _{РМ}	Conc. Of PM in dry stack gas	gr/dscf	0.00431	0.00466	0.00662	0.00364	0.00480	0.00566	0.00470
Particulate	e Matter Mass Rates Me	thod 202							
E _{PM}	Emission rate of PM	lb/hour	0.153	0.286	0.438	0.298	0.388	0.458	0.381
E _{PM}	Emission rate of PM	g/HP-hr	0.062	0.060	0.063	0.032	0.042	0.050	0.042
E _{PM}	Emission rate of PM	lb / MMBtu	0.014	0.014	0.018	0.009	0.012	0.014	0.0118
Gas Stream	n Particulate Concentra	tions Methods	5 & 202						
c _{PM}	Conc. Of PM in dry stack gas	mg/dscm	52.89	13.53	19.92	11.77	14.47	15.46	13.90
c _{PM}	Conc. Of PM in dry stack gas	gr/dscf	0.0231	0.0059	0.0087	0.0051	0.0063	0.0068	0.0061
Particulate	e Matter Mass Rates Me	thods 5 & 202							
E _{PM}	Emission rate of PM	lb/hour	0.82	0.36	0.58	0.42	0.51	0.55	0.49
E _{PM}	Emission rate of PM	g/HP-hr	0.331	0.076	0.083	0.046	0.056	0.060	0.054
E _{PM}	Emission rate of PM	lb / MMBtu	0.0757	0.0173	0.0230	0.0127	0.0156	0.0172	0.0152
Sulfur Diox	xide Concentrations Met	thod 6C							
c _{SO2}	Conc. of SO ₂ in dry stack gas	ppm	3.38	2.3	4.40	5.67	6.44	6.20	6.10
c _{SO2}	Conc. of SO ₂ in dry stack gas	ppm @ $\overline{15\%}$ O ₂	2.38	1.46	2.50	3.00	3.42	3.40	3.27
c _{SO2}	Conc. of SO ₂ in dry stack gas	mg/dscm	8.99	6.19	11.71	15.08	17.15	16.50	16.24
c _{SO2}	Conc. of SO ₂ in dry stack gas	gr/dscf	0.00393	0.00270	0.00511	0.00658	0.00749	0.00721	0.00709
Sulfur Dio	xide Mass Rates Method	6C							
E _{SO2}	Emission rate of SO ₂	lb/hour	0.14	0.17	0.34	0.54	0.60	0.58	0.58
E _{SO2}	Emission rate of SO ₂	g/HP-hr	0.056	0.035	0.049	0.059	0.066	0.064	0.063
E _{SO2}	Emission rate of SO ₂	lb / MMBtu	0.0129	0.0079	0.0135	0.0162	0.0185	0.0184	0.0177
~~-	1				-				

Advanced Industrial Resources, Inc.

Test Results

Yancy

Griffin, GA

Generator RD99 Diesel

		Units	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Averages
	Genset Load	% of full load	25	50	75	100	100	100	100
	Test Date		06-Nov-20	06-Nov-20	06-Nov-20	06-Nov-20	06-Nov-20	06-Nov-20	06-Nov-20
	Start Time		7:55	9:28	10:43	11:58	13:12	14:25	Runs
	End Time		9:00	10:31	11:47	13:04	14:17	15:30	4, 5, 6
Nitrogen O	xides Concentrations M	ethod 7E							
c _{NOx}	Conc. of NO _x in dry stack gas	ppm	516.4	236.9	555.0	812.5	823.6	859.7	831.9
C _{NOx}	Conc. of NO _x in dry stack gas	ppm @ 15% O ₂	363.6	148.9	315.4	430.7	437.0	470.9	446.2
C _{NOx}	Conc. of NO _x in dry stack gas	mg/dscm	987.7	453.1	1061.5	1554.0	1575.3	1644.3	1591.2
C _{NOx}	Conc. of NO _x in dry stack gas	gr/dscf	0.431	0.198	0.464	0.679	0.688	0.718	0.695
Nitrogen O	xides Mass Rates Metho	od 7E							
E _{NOx}	Emission rate of NO _x	lb/hour	15.3	12.1	30.7	55.5	55.5	58.1	56.4
E _{NOx}	Emission rate of NO _x	g/HP-hr	6.18	2.56	4.44	6.05	6.05	6.33	6.14
E _{NOx}	Emission rate of NO _x	lb / MMBtu	1.41	0.58	1.23	1.67	1.70	1.83	1.73
Carbon Mo	onoxide Concentrations	Method 10							
Cco.	Conc. of CO in dry stack gas	ppm	294.0	52.5	90.5	57.1	61.2	63.3	60.6
f co	Conc. of CO in dry stack gas	ppm @ 15% O ₂	207.0	33.0	51.4	30.3	32.5	34.7	32.5
-00 Cao	Cone of CO in dry stack gas	mg/dscm	342.3	61.1	105.3	66.5	71.3	73.8	70.5
~ <u>CO</u>	Cone of CO in dry stack gas	mg/dsof	0 1/05	0.0267	0.0460	0.0200	0.0311	0.0322	0.0308
Corbor M	onovido Moss Datas Mat	bod 10	0.1495	0.0207	0.0400	0.0290	0.0311	0.0322	0.0300
Carbon Me	Emission rate of CO	lb/hour	5 22	1.62	3.04	2 20	2.51	2.61	2 50
E _{CO}	Emission rate of CO	a/LID hr	3.32	0.25	3.04	2.38	2.31	2.01	2.50
E _{CO}	Emission rate of CO	g/HP-III	2.14	0.55	0.44	0.20	0.27	0.28	0.27
E _{CO}	Emission rate of CO		0.490	0.078	0.122	0.072	0.077	0.082	0.077
Total Hydr	rocarbon Concentrations	(including me	sthane) Metho	2 08	1.07	2.02	2.10	2.19	2.10
с _{тнс}	THC concentration (as methane)	ppm	3.30	2.98	1.8/	2.03	2.10	2.18	2.10
с _{тнс}	THC concentration (as methane)	ppin @ 15% O ₂	3.91	1.88	1.06	1.08	1.12	1.19	1.13
с _{тнс}	THC concentration (as methane)	mg/dscm	3.70	1.99	1.24	1.35	1.40	1.45	1.40
с _{тнс}	THC concentration (as methane)	gr/dscf	0.00162	0.00087	0.00054	0.00059	0.00061	0.00063	0.00061
Total Hydr	rocarbon Mass Rates (ind	cluding methar	ne) Method 25	5A				1	
E _{THC}	THC emission rate (as methane)	lb/hour	0.0575	0.0531	0.0359	0.0484	0.0493	0.0511	0.0496
E _{THC}	THC emission rate (as carbon)	lb/hour	0.0431	0.0398	0.0270	0.0363	0.0370	0.0384	0.0372
E _{THC}	THC emission rate (as carbon)	lb / MMBtu	0.0053	0.0025	0.0014	0.0015	0.0015	0.0016	0.0015
Methane C	Concentrations Method 2	5A							
c _{Methane}	CH ₄ concentration (as methane)	ppm	1.62	0.79	< 0.49	< 0.48	< 0.45	< 0.45	0.46
c _{Methane}	CH ₄ concentration (as methane)	ppm @ 15% O ₂	1.14	0.50	< 0.28	< 0.26	< 0.24	< 0.25	0.25
c _{Methane}	CH ₄ concentration (as methane)	mg/dscm	1.08	0.53	< 0.32	< 0.32	< 0.30	< 0.30	0.31
c _{Methane}	CH ₄ concentration (as methane)	gr/dscf	0.00047	0.00023	< 0.00014	< 0.00014	< 0.00013	< 0.00013	0.00013
Methane N	Iass Rates Method 25A								
E _{Methane}	CH ₄ emission rate (as methane)	lb/hour	0.0167	0.0141	< 0.0094	< 0.0115	< 0.0106	< 0.0107	0.0109
E _{Methane}	CH ₄ emission rate (as carbon)	lb/hour	0.0125	0.0106	< 0.0070	< 0.0086	< 0.0080	< 0.0080	0.0082
Emethane	CH ₄ emission rate (as carbon)	lb / MMBtu	0.001156	0.000675	< 0.000374	< 0.000346	< 0.000325	< 0.000336	0.000335
Ethane Concentrations Method 25A									
C _{Ethane}	C2H6 concentration (as Ethane)	ppm	< 0.0514	< 0.0491	< 0.0497	< 0.0492	< 0.0495	< 0.0492	< 0.0493
C _{Ethane}	C2H6 concentration (as Ethane)	ppm @ 15% O ₂	< 0.0362	< 0.0309	< 0.0282	< 0.0261	< 0.0263	< 0.0269	< 0.0264
C _{Ethane}	C2H6 concentration (as Ethane)	mg/dscm	< 0.0643	< 0.0614	< 0.0621	< 0.0616	< 0.0619	< 0.0615	< 0.0617
CEthanc	C2H6 concentration (as Ethane)	gr/dscf	< 0.000028	< 0.000027	< 0.000027	< 0.000027	< 0.000027	< 0.000027	< 0.000027
Ethane Ma	ass Rates Method 25A	0							
CEAL-	C ₂ H ₄ emission rate (as Ethane)	lb/hour	< 0.00100	< 0.00164	< 0.00179	< 0.00220	< 0.00218	< 0.00217	< 0.00218
Cru	C.H. emission rate (as carbon)	lb/hour	< 0.00080	< 0.00131	< 0.001/3	< 0.00176	< 0.00174	< 0.00173	< 0.00210
•Ethane	C H amiasian rate (as earbon)	lb / MMDto		< 0.00101	< 0.00143	< 0.00170	< 0.00174	< 0.00173	
CEthane	C ₂₁₁₆ emission rate (as cardon)		< 0.00007		< 0.00007	< 0.00007	< 0.00007	< 0.00007	< 0.00007
Total Hydr	rocarbon Mass Rates (ex	cluding metha	ne and ethane	0.0270	A 0.0195	0.0250	0.0272	0.0296	0.0272
E _{THC}	THC emission rate (as carbon)	10/nour	0.0297	0.0279	0.0185	0.0259	0.0273	0.0286	0.0273
L _{THC}	THC emission rate (as carbon)	g/HP-hr	0.0120	0.0059	0.0027	0.0028	0.0030	0.0031	0.0030

Notes:

1) lb/MMBtu results based on Method 19 Fd factor of 9190 for diesel oil combustion.

2) (<) indicates the result were below the detection limit and value used is the mininally detected value.

ATTACHMENT 4

Notice of Construction Application Form

A notice of construction permit is required before installing a new source of air pollution or modifying an existing source of air pollution. This application applies to facilities in Ecology's jurisdiction. Submit this application for review of your project. For general information about completing the application, refer to Ecology Forms ECY 070-410a-g, "Instructions for Ecology's Notice of Construction Application."

Ecology offers up to two hours of free pre-application assistance. We encourage you to schedule a pre-application meeting with the contact person specified for the location of your proposal, below. If you use up your two hours of free pre-application assistance, we will continue to assist you after you submit Part 1 of the application and the application fee. You may schedule a meeting with us at any point in the process.

Upon completion of the application, please enclose a check for the initial fee and mail to:

Department of Ecology Cashiering Unit P.O. Box 47611 Olympia, WA 98504-7611 For Fiscal Office Use Only: 001-NSR-216-0299-000404

C	Check the box for the location of your proposal. For assistance, call the contact listed below:				
	Ecology Permitting Office	Contact			
CRO	Chelan, Douglas, Kittitas, Klickitat, or Okanogan County Ecology Central Regional Office – Air Quality Program	Lynnette Haller (509) 457-7126 <u>lynnette.haller@ecy.wa.gov</u>			
ERO	Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Stevens, Walla Walla or Whitman County Ecology Eastern Regional Office – Air Quality Program	Karin Baldwin (509) 329-3452 <u>karin.baldwin@ecy.wa.gov</u>			
□ NWRO	San Juan County Ecology Northwest Regional Office – Air Quality Program	David Adler (425) 649-7267 <u>david.adler@ecy.wa.gov</u>			
	For actions taken at Kraft and Sulfite Paper Mills and Aluminum Smelters Ecology Industrial Section – Waste 2 Resources Program Permit manager:	James DeMay (360) 407-6868 james.demay@ecy.wa.gov			
NWP	For actions taken on the US Department of Energy Hanford Reservation Ecology Nuclear Waste Program	Lilyann Murphy (509) 372-7951 <u>lilyann.murphy@ecy.wa.gov</u>			

Check the box below for the fee that applies to your application.

New project or equipment:

	\$1,500: Basic project initial fee covers up to 16 hours of review.
\$10,000: Complex project initial fee covers up to 106 hours of review.	\$10,000: Complex project initial fee covers up to 106 hours of review.

Change to an existing permit or equipment:

	\$200: Administrative or simple change initial fee covers up to 3 hours of review
	Ecology may determine your change is complex during completeness review of your application. If your project is complex, you must pay the additional \$675 before we will continue working on your application.
\boxtimes	\$875: Complex change initial fee covers up to 10 hours of review
	\$350 flat fee: Replace or alter control technology equipment under WAC 173-400-114
	Ecology will contact you if we determine your change belongs in another fee category. You must pay the fee associated with that category before we will continue working on your application.

Read each	n statement, then check the box next to it to acknowledge that you agree.
	The initial fee you submitted may not cover the cost of processing your application. Ecology will track the number of hours spent on your project. If the number of hours Ecology spends exceeds the hours included in your initial fee, Ecology will bill you \$95 per hour for the extra time.
\square	You must include all information requested by this application. Ecology may not process your application if it does not include all the information requested.
\square	Submittal of this application allows Ecology staff to visit and inspect your facility.

Notice of Construction Application Part 1: General Information

I. Project, Facility, and Company Information	
1. Project Name	
MWH Data Center Approval Order Amendment Request	
2. Facility Name	
MWH Data Center	
3. Facility Street Address	
1515 Port Industrial Parkway, Quincy, WA, 98848	
4. Facility Legal Description	
PARCEL 'C' OXFORD SP 28-8	
5. Company Legal Name (if different from Facility Name)	
Microsoft Corporation	
6. Company Mailing Address (street, city, state, zip)	
1515 Port Industrial Parkway, Quincy, WA, 98848	

II. Contact Information and Certification

1. Facility Contact Name (who will be onsite)		
Shirazeh Entezari		
2. Facility Contact Mailing Address (if different than Company Mailing Address)		
1515 Port Industrial Parkway, Quincy, WA, 98848		
3. Facility Contact Phone Number	4. Facility Contact E-mail	
509-669-0884	shirazeh.entezari@microsoft.com	
5. Billing Contact Name (who should receive billing information)		
Mark Brunner, Landau Associates, Inc.		
6. Billing Contact Mailing Address (if different than Company Mailing Address)		
155 NE 100 th Ste 302, Seattle, WA 98125		
7. Billing Contact Phone Number	8. Billing Contact E-mail	
(206) 631-8695	mbrunner@landauinc.com	
9. Consultant Name (optional – if 3 rd party hired to complete application elements)		
Mark Brunner		
10. Consultant Organization/Company		
Landau Associates, Inc.		
11. Consultant Mailing Address (street, city, state, zip)		
155 NE 100 th Ste 302, Seattle, WA 98125		
12. Consultant Phone Number	13.Consultant E-mail	
(206) 631-8695	mbrunner@landauinc.com	
14. Responsible Official Name and Title (who is responsible for project policy or decision-making)		
Hichem Garnaoui		
16. Responsible Official Phone	17. Responsible Official E-mail	
206-330-7508	higarnao@microsoft.com	
18. Responsible Official Certification and Signature		
I certify that the information on this application is accurate and complete.		
Signature 11 Saray Date_04/14/2022		
Part 2: Technical Information		

The Technical Information may be sent with this application form to the Cashiering Unit, or may be sent directly to the Ecology regional office with jurisdiction along with a copy of this application form.

For all sections, check the box next to each item as you complete it.

III. Project Description

Please attach the following to your application.

- Written narrative describing your proposed project.
- \boxtimes Projected construction start and completion dates.

Operating schedule and production rates.

- List of all major process equipment with manufacturer and maximum rated capacity.
- Process flow diagram with all emission points identified.
- Plan view site map.

Manufacturer specification sheets for major process equipment components.

Manufacturer specification sheets for pollution control equipment.

Fuel specifications, including type, consumption (per hour & per year) and percent sulfur.

IV. State Environmental Policy Act (SEPA) Compliance

Check the appropriate box below.

SEPA review is complete:

Include a copy of the final SEPA checklist and SEPA determination (e.g., DNS, MDNS, EIS) with your application.

 \boxtimes SEPA review has not been conducted:

If review will be conducted by another agency, list the agency. You must provide a copy of the final SEPA checklist and SEPA determination before Ecology will issue your permit. Agency Reviewing SEPA:

If the review will be conducted by Ecology, fill out a SEPA checklist and submit it with your application. You can find a SEPA checklist online at https://ecology.wa.gov/Regulations-Permits/SEPA/Environmental-review/SEPA-document-templates

V. Emissions Estimations of Criteria Pollutants

Does your project generate criteria air pollutant emissions? Yes No

If yes, please provide the following information regarding your criteria emissions in your application.

The names of the criteria air pollutants emitted (i.e., NO_x, SO₂, CO, PM_{2.5}, PM₁₀, TSP, VOC, and Pb)

Potential emissions of criteria air pollutants in tons per hour, tons per day, and tons per year (include calculations)

If there will be any fugitive criteria pollutant emissions, clearly identify the pollutant and quantity

VI. Emissions Estimations of Toxic Air Pollutants

Does your project generate toxic air pollutant emissions? [] Yes [] No

If yes, please provide the following information regarding your toxic air pollutant emissions in your application.

The names of the toxic air pollutants emitted (specified in <u>WAC 173-460-150¹</u>)

Potential emissions of toxic air pollutants in pounds per hour, pounds per day, and pounds per year (include calculations)

If there will be any fugitive toxic air pollutant emissions, clearly identify the pollutant and quantity

VII. Emission Standard Compliance

Provide a list of all applicable new source performance standards, national emission standards for hazardous air pollutants, national emission standards for hazardous air pollutants for source categories, and emission standards adopted under Chapter 70.94 RCW.

Does your project comply with all applicable standards identified? [Ves] No

VIII. Best Available Control Technology

Provide a complete evaluation of Best Available Control Technology (BACT) for your proposal.

¹ <u>http://apps.leg.wa.gov/WAC/default.aspx?cite=173-460-150</u>

IX. Ambient Air Impacts Analyses

Please provide the following:

- Ambient air impacts analyses for Criteria Air Pollutants (including fugitive emissions)
- Ambient air impacts analyses for Toxic Air Pollutants (including fugitive emissions)

Discharge point data for each point included in air impacts analyses (include only if modeling is required)

- Exhaust height
- Exhaust inside dimensions (ex. diameter or length and width)
- Exhaust gas velocity or volumetric flow rate
- Exhaust gas exit temperature
- The volumetric flow rate
- Description of the discharges (i.e., vertically or horizontally) and whether there are any obstructions (ex., raincap)
- Identification of the emission unit(s) discharging from the point
- The distance from the stack to the nearest property line
- Emission unit building height, width, and length
- Height of tallest building on-site or in the vicinity and the nearest distance of that building to the exhaust
- Whether the facility is in an urban or rural location

Does your project cause or contribute to a violation of any ambient air quality standard or acceptable source impact level? \Box Yes \bigotimes No