APPENDIX A COLD-START ADJUSTMENT FACTORS

DIESEL GENERATOR COLD-START ADJUSTMENT FACTORS ICF INTERNATIONAL, APRIL-2011

Short-term concentration trends for VOC, CO and NOx immediately following a cold start by a large diesel backup generator were measured by the California Energy Commission for their document :Air Quality Implications of Backup Generators in California" dated July 2005. They used continuous monitors to measure the following trends, which are shown in the attached figure:

During the first 14 seconds after cold-start, the VOC concentration spiked up to a maximum value of 900 ppm before dropping back to the steady state value of 30 ppm. The area under the concentration-vs-time curve represents a "VOC spike" of 6,300 ppm-sec..

It took 8 seconds for the NOx concentration to ramp up to its steady state value of 38 ppm. The area under the concentration-vs-time curve represents the "NOx deficit" of 160 ppm-sec.

The Cold Start Adjustment Factor for DPM was estimated by assuming the concentration trend for DPM should be similar to the trend for VOC. In that case, for any generator operating period after a cold start, the adjustment factor is the area under the VOC Spike divided by the area under the 30 ppm steady state concentration profile.

Example: DPM emissions for 1-hour Generator Runtime After Cold Start

The steady state VOC concentration is 30 ppm. For a 1-hour runtime the VOC emission is the area under the concentration-vs-time curve, or 30 pppm x 3600 seconds = 108,000 ppm-sec.

The "cold start factor" is the VOC spike area divided by the steady state area:

(6300 ppm-sec) / (108,000 ppm-sec) = 0.058.

So during the 1-hour period following a cold start the overall DPM emission factor is adjusted by the "cold start factor" of 1.058.

Example: NOx Emissions During 1-Hour Runtime Following Cold Start

NOx Deficit = 160 ppm-sec

Steady-state NOx profile = 38 ppm x 3600 sec = 137,000 ppm-sec

NOx Cold Start Factor = 1 - (160/137,000) = 0.999 x Steady State Emission Factor

Table B-1. Emission Factor Adjustments for Cold Start

Runtime Following Cold Start	DPM	NOx
10-minutes	1.35	0.999
30-minutes	1.12	0.999
1-hour	1.058	0.999
8-hours	1.007	0.999

Figure 19. Cold-start emissions for CO and NO_x as a function of time

VOC Spike

VOC Spike Area = 1/2 (900 ppm) (14 sec) = 6,300 ppm-sec

VOC PPM 14 sec Sec

Area = 1/2 (900)(14 sec) = 6,300 ppm-sec

Steady state 30 ppm

Steady State VOC Areas @ 30 ppm

10-minutes Area = 30 ppm x 600 sec = 18,000 ppm-sec Cold-Start Factor = 6,300/18,000 = 0.35 So DPM in 1st 10 minutes = 1,35 * steady state

30-min Area = 30 ppm x 30 min x 60 = 54,000 ppm-sec Cold Start Factor = 6300/54,000 = 0.12 So DPM in 1st 30 min = 1.12 * Steady State

60- Minutes = 30 ppm x 60 min x 60 sec/mm = 108,000 ppm-sec Cold start Factor = 6300/108,000 = 0.058 So DPM in 1st 60 min = 1.058 * Steady state

8-hours: 30 ppm x 8 his x 3600 ser/hr= 864,000 ppmsex Cold Start factor= 6300/864,000 = 0.0073 So DPM in 8-his = 1,0073 * Steady State

Nox Delay: 8 secs to reach 40 ppm

Avea: 1/2 (8 sec) (40) = 160 ppm. Sec

Nox Overshoot: 22 secs to drap to 38 ppm

Area = 1/2 (22 sec) (2 ppm) = 22 ppm- sec

Net Deficit = ZZ ppm-sec - 160 ppm-sec = -138 ppm-sec

I-hour Nox Cald-Start Factor @ 38 ppm steady state

Steady state I-hr = 3600 sec x 38 ppm = 137,000 ppm-sec

Cold Start factor = -138 ppm-sec / 137,000 ppm-sec

So Cold Start adjustment = 0,999 * Steady State

APPENDIX B EMISSION CALCULATIONS AND AERMOD DISPERSION FACTORS

Table B-1. Per-Generator Emission Rates in lbs/hour

MTU's Stable	Condition Not-	to-Exceed (St	ack Test Limit	ts), lbs/hour							
			Primary								
Electrical Load	PM	Nox	NO2	со	voc						
100% (3,000 kWe)	0.484	10.3	0.4	1.35	0.22						
93%	0.444	9.3	0.4	1.24	0.22						
90%	0.425	8.83	0.4	1.19	0.22						
81%	0.374	7.58	0.4	1.05	0.22						
10%	0.4	2.6	1.5	0.6	0.25						
Controlled, Cold-Sta	art, Catalyst-Del	ayed Emission	ons Used for A	AERMOD, lbs/	hour						
	Primary										
Electrical Load	PM	Nox	NO2	со	voc						
100%	0.512	17.2	1.22	2.39	0.39						
93%	0.47	15.4	1.1	2.17	0.39						
90%	0.45	14.6	1.06	2.11	0.39						
81%	0.396	12.5	0.95	1.93	0.39						
10%	0.422	3.12	0.88	1.41	0.61						
N	Iominal Uncont	rolled Emissi	ons, lbs/hour								
			Primary								
Electrical Load	PM	Nox	NO2	со	voc						
100%	3.23	51.7	5.17	6.8	1.1						
93%	2.96	46.1	4.61	6.3	1.1						
90%	2.83	43.6	4.36	6	1.1						
81%	2.49	37.2	3.72	5.3	1.1						
10%	2.67	5.7	0.57	2.8	1.2						
	_	!	!	<u> </u>							

G:\Seattle\PNWProjects\PACLAND__-11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xls]Annual Emissions

Table B-2a. Fuel Usage and Emissions During Startup/Commissioning Testing

											•	
			Per-Gen	Pe	r-Genera	ator lbs/	hr	Per-Gei	nerator Star	tup Emissic	ns. lbs	
			Fuel,			,					.,	Per-Gen
Activity	Hours	Load	gal/hr	PM	NOX	VOC	CO	PM	NOX	VOC	СО	Fuel, gal
Level 3 Testing	8	100%	232	0.512	17.2	0.39	2.39	4.10	138	3.1	19.1	1,856
Level 4 Testing	12	75%	183	0.357	11.02	0.39	1.69	4.28	132	4.7	20.3	2,196
Level 5 Testing	20	100%	232	0.512	17.2	0.39	2.39	10.2	344	7.8	47.8	4,640
Combined Startup/O	Commiss	ioning E	ach Genera	18.6	614	16	87.2	8,692				
Number of Generate	ors Teste	ed 70-ye	ar period		17	17	17	17	17			
Facility-Wide Startu	p/Comm	nissionin	g, Combine	d 17 Ger	nerators	(lbs)		317	10,435	265	1,482	147,764
Annualized 70-yr Av	erage St	artup er	nissions (to	ns/yr)				0.0023	0.0745	0.0019	0.0106	
Number of Generate	ors Com	missione	d Mx Year	of Full b	uildout			5	5	5	5	5
5-Genset Max Build	out Peal	Year (lb	s)					93	3,069	78	436	43,460
Facility-Wide DEEP 6	Emission	s from S	tartup Test	ing (tons	5)			0.158	5.218	0.133	0.741	
Facility-Wide DEEP 6	Emission	s from R	outine Ope	erations	(tons)			0.221	5.83	0.36	1.22	
70-Year DEEP Emiss	ions fror	n Routin	e Operatio	ns (tons)				15.47	408.1	25.2	85.4	
Fraction of 70-Year	Emissior	s Contri	buted by In	itial Star	tup Test	ing and					·	
Commissioning								1.0%	1.3%	0.5%	0.9%	

Table B-2B. Fuel Usage and Emissions During Triennial Stack Testing

				Warn	ned Up P	er-Gene	rator					
			Per-Gen		lbs,	/hr		Per-Gei	nerator Star	tup Emissic	ns, lbs	
			Fuel,									Per-Gen
Activity	Hours	Load	gal/hr	PM	NOX	VOC	CO	PM	NOX	VOC	CO	Fuel, gal
Stack Testing	10	100%	232	0.484	10.3	0.22	1.35	4.84	103	2.2	13.5	2,320
Combined Stack Tes	ting Eac	h Gener	ator					4.8	103	2	13.5	2,320
Number of Generat	ors Teste	ed any o	ne year					7	7	7	7	7
Max-year stack test	ing of G	enerato	rs (lbs)					34	721	15	95	16,240
3-yr Annualized Sta	k Testin	g, tons/	/r (5.7 gens	each ye	ar)			0.01379	0.29355	0.00627	0.03848	
Facility-Wide DEEP I	Emission	s from R	outine Ope	rations	(tons)			0.221	5.83	0.36	1.22	
Fraction of Routine	Operatio	onal Emi	ssions Cont	ributed	by Trienr	ial Stack	Testing	6.2%	5.0%	1.7%	3.2%	
PM NOX VOC CO												
Fraction of Routine	Operatio	onal Emi	ssions Cont	ributed l	by Trienr	ial Stack	Testing					
and Initial Startup/C	Commiss	ioning						7.3%	6.3%	2.3%	4.0%	

 $G: Seattle\ PNUW Projects\ PACLAND \ _-11_Riker\ Data\ Center\ O3_Reports-Analyses\ Emission\ Calculations\ [Startup-Stacktest-Emissions_jmw_2-28-2012.xls]\ Detail\ PNUW\ Projects\ PACLAND\ _-11_Riker\ Data\ Center\ O3_Reports-Analyses\ Pmission\ Calculations\ [Startup-Stacktest-Emissions_jmw_2-28-2012.xls]\ Data \ Policy\ PNUW\ Projects\ PNUW\ PNUW\$

CATALYST-DELAY EMISSION FACTORS

	NOX-NO2 AFTER DISCUSSIONS WITH JAN													
					NOX-1	NO2 AFTER	DISCUSSIO	NS WITH JAI						
Elm-Approv	ved Increas	es-Decreas	es											
NO2 Emissi	NO2 Emissions (lbs/hr) Accounting For Catalyst Delay Time													
								Wt.						
			Untreated	Subtotal		Treated	Subtotal	Average						
	Tot Run	Warm Up	NO2	Time x	Treated	NO2	Time x	NO2						
Load	Time Min	time	lbs/hr	NO2	Time Min	lbs/hr	NO2	lbs/hr						
81	60	10	3.72	0.62	50	0.4	0.333333	0.95						
90	60	10	4.36	0.727	50	0.4	0.333333	1.06						
93	60	10	4.61	0.768	50	0.4	0.333333	1.10						
Idle	60	20	0.57	0.19	40	1.5	1	1.190						
Idle	30	20	0.57	0.38	10	1.5	0.5	0.880						

	ES RICHMOND AND TODD SNARR, 9-13-2012														
AMES R	ICHMOND A	ND TODD S	NARR, 9-13	-2012											
	Elm-Approved Increases-Decreases														
	NOX Emissions (lbs/hr) Accounting For Catalyst Delay Time														
									Wt.						
е				Untreated	Subtotal		Treated	Subtotal	Average						
2		Tot Run	Warm Up	NOX	Time x	Treated	NOX	Time x	NOX						
r	Load	Time Min	time	lbs/hr	NOX	Time Min	lbs/hr	NOX	lbs/hr						
5	81	60	10	37.2	6.2	50	7.58	6.316667	12.52						
5	90	60	10	43.6	7.267	50	8.83	7.358333	14.63						
)	93	60	10	46.1	7.683	50	9.3	7.75	15.43						
)	Idle	60	20	6	2	40	2.6	1.733333	3.733						
)	Idle	30	20	6	4	10	2.6	0.866667	4.867						

G:\Seattle\PNWProjects\PACLAND__-11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xls]EFs w Catalyst delay

Controlled PM Emission Rates

Load	PM lbs/hr
100	0.484
81	0.374
90	0.425
93	0.444
Idle	0.40

Elm-Approved Increases-Decreases													
CO Emissio	ns (lbs/hr)	Accounting	For Catalys	t Delay Tim	e								
								Wt.					
	Tot Run	Warm Up	Untreated	Subtotal	Treated	Treated	Subtotal	Average					
Load	Time Min	time	CO lbs/hr	Time x CO	Time Min	CO lbs/hr	Time x CO	CO lbs/hr					
81	60	10	5.3	0.883333	50	1.05	0.875	1.76					
90	60	10	6	1.000	50	1.19	0.991667	1.99					
93	60	10	6.3	1.050	50	1.24	1.033333	2.08					
Idle	60	20	2.8	0.933333	40	0.6	0.4	1.333					
50	60	10	4.2	0.7	50	0.84	0.7	1.40					
60	60	10	4.4	0.733333	50	0.87	0.725	1.46					
70	60	10	4.6	0.766667	50	0.91	0.758333	1.53					
Idle	30	20	2.8	1.866667	10	0.6	0.2	2.067					

Clas Assess		D						
Elm-Appro			es g For Cataly	st Delay Tir	ne			
	, ,		,	,				Wt
				Subtotal			Subtotal	Average
	Tot Run	Warm Up	Untreated	Time x	Treated	Treated	Time x	VO
Load	Time Min	time	lbs/hr	conc	Time Min	lbs/hr	conc	lbs/h
81	60	10	1.1	0.183333	50	0.22	0.183333	0.37
90	60	10	1.1	0.183	50	0.22	0.183333	0.3
93	60	10	1.1	0.183	50	0.22	0.183333	0.3
Idle	60	20	1.23	0.41	40	0.25	0.166667	0.57
50	60	10	1.1	0.183333	50	0.22	0.183333	0.3
60	60	10	1.1	0.183333	50	0.22	0.183333	0.3
70	60	10	1.1	0.183333	50	0.22	0.183333	0.3
Idle	30	20	1.23	0.82	10	0.25	0.083333	0.903

ANNUAL EMISSIONS_ Oct-2012-INCREASED IDLE RATE_ Riker Data Center (10-11-2012)

G:\Seattle\PNWProjects\PACLAND_--11_Riker Data Center\03_Reports-Analyses\N02 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-N02_jmw_10-11-2012.xls]Annual Emissions

DAYIMF-MASKED TABLE AA. Annual DPM - Scheduled Diagnostic Testing, Power Outage + Storm Avoidance, Corrective Maintenance, and De-energized Building Maintenance

DAYIME-MASKE	D TABLE A	A. Annu	ai DP	IVI - Scne	eaulea L	Diagnos		ng, Pow urs at Eac			rm Avoi	aance,	Corrective	iviaintena 	nce, and i	De-ener	gizea Buii	iding ivia	intenanc	е,							
			1												Each	Each	Each	Each	Facility							Each	1
															Genset	Genset	Genset	Genset	Wide	Facility-	Facility	Each	Facility-	Each	Facility-	Genset	Facility
		Engine	No.											AERMOD	DPM	Fuel	NOX	DPM	DPM	Wide Fuel	Wide NOX	Genset	Wide CO	Genset	Wide HC	NO2	Wide NO
Gen#	Gen Area	Load	Gens	W	M	Q	A-F	A-Step	Corr	De-En	Outage	Cool	Total hrs/yr	Hrs/day	lbs/hr	Gal/Hr	lbs/hr	lbs/yr	Tons/yr	Gal/Year	Tons/yr	CO lbs/hr	Tons/Yr	HC lbs/hr	Tons/Yr	lbs/hr	Tons/\
A - Unplanned Outage +	Storm Avoida	nce (24 hrs/c					Ĺ	Inplanned C	utage + Sto	orm Avoida	ince																
1-1 to 1-5	Bldg 1	81%	5								24		24	24	0.396	195	12.5	9.5	0.02376	23,400	0.75	1.76	0.1056	0.37	0.0222	0.95	0.05
2-1 to 2-3	Bldg 2	90%	3								24		24	<u>24</u>	0.45	213	14.6	10.8	0.0162	15,336	0.5256	1.99	0.07164	0.37	0.01332	1.06	0.03
3-1 to 3-3	Bldg 3	90%	3								24		24	<u>24</u>	0.45	213	14.6	10.8	0.0162	15,336	0.5256	1.99	0.07164	0.37	0.01332	1.06	0.03
ETC-1	ETC	93%	1								24		24	<u>24</u>	0.47	220	15.4	11.3	0.00564	5,280	0.1848	2.08	0.02496	0.37	0.00444	1.1	0.01
Group B - Testing at F	ull Outage Lo	ads						Testing	at Full Out	age Loads																	
1-1 to 1-5	Bldg 1	81%	5			3	6			8			17	<u>12</u>	0.396	195	12.5	6.7	0.01683	16,575	0.53125	1.76	0.0748	0.37	0.015725	0.95	0.04
2-1 to 2-3	Bldg 2	90%	3			3	6			8			17	<u>12</u>	0.45	213	14.6	7.7	0.011475	10,863	0.3723	1.99	0.050745	0.37	0.009435	1.06	0.02
3-1 to 3-3	Bldg 3	90%	3			3	6			8			17	<u>12</u>	0.45	213	14.6	7.7	0.011475	10,863	0.3723	1.99	0.050745	0.37	0.009435	1.06	0.02
ETC-1	ETC	93%	1			3	6			8			17	<u>12</u>	0.47	220	15.4	8.0	0.003995	3,740	0.1309	2.08	0.01768	0.37	0.003145	1.1	0.00
Group C - 100% Load	During Testin	g (Daytime						Test	ng at 1009	6 Load			•				ĺ										
1-1 to 1-5	Bldg 1	100%	5					0.5	8				8.5	<u>12</u>	0.512	232	17.2	4.4	0.01088	9,860	0.3655	2.39	0.050788	0.37	0.007863	1.22	0.02
2-1 to 2-3	Bldg 2	100%	3					0.5	8				8.5	<u>12</u>	0.512	232	17.2	4.4	0.006528	5,916	0.2193	2.39	0.030473	0.37	0.004718	1.22	0.01
3-1 to 3-3	Bldg 3	100%	3					0.5	8				8.5	<u>12</u>	0.512	232	17.2	4.4	0.006528	5,916	0.2193	2.39	0.030473	0.37	0.004718	1.22	0.01
ETC-1	ETC	100%	1					0.5	8				8.5	12	0.512	232	17.2	4.4	0.002176	1,972	0.0731	2.39	0.010158	0.37	0.001573	1.22	0.00
1-6 and 1-7 Reserve	Bldg 1	100%	2					0.5	8				8.5	<u>12</u>	0.512	232	17.2	4.4	0.004352	3,944	0.1462	2.39	0.020315	0.37	0.003145	1.22	0.01
2-4 Reserve	Bldg 2	100%	1					0.5	8				8.5	<u>12</u>	0.512	232	17.2	4.4	0.002176	1,972	0.0731	2.39	0.010158	0.37	0.001573	1.22	0.00
3-4 Reserve	Bldg 3	100%	1					0.5	8				8.5	<u>12</u>	0.512	232	17.2	4.4	0.002176	1,972	0.0731	2.39	0.010158	0.37	0.001573	1.22	0.00
ETC-2 Reserve	ETC	100%	1					0.5	8				8.5	12	0.512	232	17.2	4.4	0.002176	1,972	0.0731	2.39	0.010158	0.37	0.001573	1.22	0.00
D1 _ Idle During Eme	ergency Outag	es (24						Idle Durin	g Outages (24 hrs/day)		•				ĺ										
1-1 to 1-5	Bldg 1	10%	5	0	0	0	0	0	0	0	0	4	4	24	0.4224	45	3.73	1.7	0.004224	900	0.0373	1.333	0.01333	0.577	0.00577	1.19	0.01
2-1 to 2-3	Bldg 2	10%	3	0	0	0	0	0	0	0	0	4	4	24	0.4224	45	3.73	1.7	0.002534	540	0.02238	1.333	0.007998	0.577	0.003462	1.19	0.00
3-1 to 3-3	Bldg 3	10%	3	0	0	0	0	0	0	0	0	4	4	24	0.4224	45	3.73	1.7	0.002534	540	0.02238	1.333	0.007998	0.577	0.003462	1.19	0.00
ETC-1	ETC	10%	1	. 0	0	0	0	0	0	0	0	4	4	24	0.4224	45	3.73	1.7	0.000845	180	0.00746	1.333	0.002666	0.577	0.001154	1.19	0.00
1-6 and 1-7 Reserve	Bldg 1	10%	2	0	0	0	0	0	0	0	12	1	13	24	0.4224	45	3.73	5.5	0.005491	1,170	0.04849	1.333	0.017329	0.577	0.007501	1.19	0.01
2-4 Reserve	Bldg 2	10%	1	. 0	0	0	0	0	0	0	24	1	25	24	0.4224	45	3.73	10.6	0.00528	1,125	0.046625	1.333	0.016663	0.577	0.007213	1.19	0.01
3-4 Reserve	Bldg 3	10%	1	. 0	0	0	0	0	0	0	24	1	25	24	0.4224	45	3.73	10.6	0.00528	1,125	0.046625	1.333	0.016663	0.577	0.007213	1.19	0.01
ETC-2 Reserve	ETC	10%	1	. 0	0	0	0	0	0	0	24	1	25	24	0.4224	45	3.73	10.6	0.00528	1,125	0.046625	1.333	0.016663	0.577	0.007213	1.19	0.01
D2 _ Idle During Test	ing (Daytime	Only)						Idle During	Testing (D	aytime Onl	y)		•														
1-1 to 1-5	Bldg 1	10%	5	20	3	0	0	0	0	0	0	5.5	28.5	<u>12</u>	0.4224	45	3.73	12.0	0.030096	6,413	0.265763	2.07	0.147488	0.903	0.064339	0.88	0.06
2-1 to 2-3	Bldg 2	10%	3	20	3	0	0	0	0	0	0	5.5	28.5	<u>12</u>	0.4224	45	3.73	12.0	0.018058	3,848	0.159458	2.07	0.088493	0.903	0.038603	0.88	0.03
3-1 to 3-3	Bldg 3	10%	3	20	3	0	0	0	0	0	0	5.5	28.5	<u>12</u>	0.4224	45	3.73	12.0	0.018058	3,848	0.159458	2.07	0.088493	0.903	0.038603	0.88	0.03
ETC-1	ETC	10%	1	20	3	0	0	0	0	0	0	5.5	28.5	<u>12</u>	0.4224	45	3.73	12.0	0.006019	1,283	0.053153	2.07	0.029498	0.903	0.012868	0.88	0.01
1-6 and 1-7 Reserve	Bldg 1	10%	2	20	3	3	6			8	0	0.5	40.5	<u>12</u>	0.4224	45	3.73	17.1	0.017107	3,645	0.151065	2.07	0.083835	0.903	0.036572	0.88	0.03
2-4 Reserve	Bldg 2	10%	1	20	3	3	6			8	0	0.5	40.5	<u>12</u>	0.4224	45	3.73	17.1	0.008554	1,823	0.075533	2.07	0.041918	0.903	0.018286	0.88	0.018
3-4 Reserve	Bldg 3	10%	1	20	3	3	6			8	0	0.5	40.5	12	0.4224	45	3.73	17.1	0.008554	1,823	0.075533	2.07	0.041918	0.903	0.018286	0.88	0.01
ETC-2 Reserve	ETC	10%	1	20	3	3	6			8	0	0.5	40.5	<u>12</u>	0.4224	45	3.73	17.1	0.008554	1,823	0.075533	2.07	0.041918	0.903	0.018286	0.88	0.01
New Group E - 100%	Load During	Stack											•				ĺ										
Testing + Commission	_					100	% Load Du	ing Stack T	esting + Co	mmissionir	ng (Daytime	Only)															ı
resting r commission	ling (Dayenne	Olliy)				100	70 LOGG DG	ilig Stack i	esting i co	11111133101111	ig (Daytillic	Olliy)	1							H							
						1	1					l			Each	Each	Each	Each	Facility								ı
					1/3							l			Genset	Genset	Genset	Genset	Wide	Facility-	Facility	Each	Facility-	Each	Facility-		Facility
		Engine	No.	1/70	Stack	1	1					l		AERMOD	DPM	Fuel	NOX	DPM	DPM	Wide Fuel	Wide NOX		Wide CO	Genset	Wide HC		Wide NO
Gen #	Gen Area	Load	Gens		Testing	Q	A-F	A-Step	Corr	De-En	Outage	Cool	Total hrs/yr	Hrs/day	lbs/hr	Gal/Hr	lbs/hr	lbs/yr	Tons/yr	Gal/Year	Tons/yr	CO lbs/hr	Tons/Yr	HC lbs/hr	Tons/Yr		Tons/yr
1-1 to 1-5	Bldg 1	100%	5	0.519	3.33								3.849	12	0.512	232	17.2	1.97	0.004927	4,465	0.165507	2.39		0.37	0.00356	1.22	0.01
2-1 to 2-3	Bldg 2	100%	3	0.519	3.33								3.849	12	0.512	232	17.2	1.97	0.002956	2,679	0.099304	2.39	0.013799	0.37	0.002136	1.22	0.00
3-1 to 3-3	Bldg 3	100%	3	0.519	3.33								3.849	12	0.512	232	17.2	1.97		2,679	0.099304	2.39	0.013799	0.37	0.002136	1.22	0.00
ETC-1	ETC	100%	1	0.519	3.33								3.849	12	0.512	232	17.2	1.97	0.000985	893	0.033101	2.39	0.0046	0.37	0.000712	1.22	0.00
1-6 and 1-7 Reserve	Bldg 1	100%	2	0.519	3.33								3.849	12	0.512	232	17.2	1.97		1,786	0.066203	2.39		0.37		1.22	0.00
2-4 Reserve	Bldg 2	100%	1	0.519	3.33		1	1					3.849	12	0.512	232	17.2	1.97	0.000985	893	0.033101	2.39	0.0046	0.37	0.000712	1.22	0.00
3-4 Reserve	Bldg 3	100%	1	0.519	3.33		1	1					3.849	12	0.512	232	17.2	1.97		893	0.033101	2.39	0.0046	0.37	0.000712	1.22	0.00
ETC-2 Reserve	ETC	100%	1	0.519	3.33		1	1					3.849	12	0.512	232	17.2	1.97		893	0.033101	2.39	0.0046	0.37	0.000712	1.22	0.00
																	1			1		H					
														70-yr Fa	cility-Wide In	ncl. Startu	p and Stack	Testing	0.306	181,305	6.49	li i	1.38		0.419		0.70
																			0.289	166,125	5.93		1.30		0.407		0.66
														70-yr Facility-Wide Routine Annual					5.205				50				2.507

G:\Seattle\PNWProjects\PACLAND_-.11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xls]Annual Emissions

1

APPENDIX C AERMOD STACK PARAMETERS

TABLE AA2 - Oct-2012-INCREASED IDLE RATE_ AERMOD Generator Parameters for Riker Data Center (10-11-2012)

G:\Seattle\PNWProjects\PACLAND__-11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xls]AA2-Sep-2012 DEEP AERM

DAYIME-MASKED TABLE AA. Annual DPM - Scheduled Diagnostic Testing, Power Outage + Storm Avoidance, Corrective Maintenance, and De-energized Building Maintenance,

Column C						_	-	_								Ho	urs at Eac	h Runtim	e Mode								
Column C																								Each	Each	Facility	
Gen Cont C					Exit		Annual-Avg DPM																	Genset	Genset	Wide	Facility-
Component Contract Vision Authority Component Contract Vision Component Contract			Engine	Exit	Velocity	Stack Dia	Rate per Engine	No. Temp		Dia	Area	Velocity											AERMOD	DPM	DPM	DPM	Wide Fuel
1.10.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Gen#	Gen Area	Load	Temp (K)	(m/sec)	(m)	(g/sec)	Gens F	ACFM	Inches	ft2	fps	W	M	Q	A-F	A-Step	Corr	De-En	Outage	Cool	Total hrs/yr	Hrs/day	lbs/hr	lbs/yr	Tons/yr	Gal/Year
2 1 2 2 2 2 2 2 2 2	A - Unplanned Outage -	+ Storm Avoida	nce (24 hrs,	/day)										Un	olanned Ou	tage + Stor	rm Avoidan	ce									
3 10 2 10 2 2 2 2 2 2 2 2 2	1-1 to 1-5	Bldg 1	81%	720	29.2	0.661	1.37E-04	5 836	21208	26	3.69	95.92								24		24	24	0.396	9.5	0.02376	23,400
Column C	2-1 to 2-3	Bldg 2	90%	742	30.3	0.661	1.55E-04	3 877	22000	26	3.69	99.50								24		24	24	0.45	10.8	0.0162	15,336
Compt	3-1 to 3-3	Bldg 3	90%	742	30.3	0.661	1.55E-04	3 877	22000	26	3.69	99.50								24		24	24	0.45	10.8	0.0162	15,336
1.5 1.5	ETC-1	ETC	93%	750	30.7	0.661	1.62E-04	1 891	22273	26	3.69	100.73								24		24	24	0.47	11.3	0.00564	5,280
2 1 2 2 2 2 2 2 2 2	Group B - Testing at F	Full Outage Lo	ads (Daytir	ne Only)											Testing a	t Full Outa	ge Loads										
18-1-1- 18	1-1 to 1-5	Bldg 1	81%	720	29.2	0.661	1.94E-04	5 836	21208	26	3.69	95.92			3	6			8			17	<u>12</u>	0.396	6.7	0.01683	16,575
## Company Com	2-1 to 2-3	Bldg 2	90%	742	30.3	0.661	2.20E-04	3 877	22000	26	3.69	99.50			3	6			8			17	<u>12</u>	0.45	7.7	0.011475	10,863
Compt-Charge Temper Compt-Charge Temper Compt-Charge Temper T	3-1 to 3-3	Bldg 3	90%	742	30.3	0.661	2.20E-04	3 877	22000	26	3.69	99.50			3	6			8			17	<u>12</u>	0.45	7.7	0.011475	10,863
1.1 1.5 1.6 1.5 1.6 1.5	ETC-1	ETC	93%	750	30.7	0.661	2.30E-04	1 891	22273	26	3.69	100.73			3	6			8			17	12	0.47	8.0	0.003995	3,740
2 1 10 2 3 1 10 2 3 10 10 2 1 10 10 10 10 10 10 10 10 10 10 10 10 1	Group C - 100% Load	During Testin	g (Daytime	Only)											Testin	ng at 100%	Load										
1		Bldg 1	100%		31.6	0.661	1.25E-04		22895	26	3.69	103.55					0.5	8						0.512	4.4	0.01088	
## CFG STC 300N 746 11.6 5.661 1.256.04 1 92 2289 22.6 3.69 13.55	2-1 to 2-3	Bldg 2	100%	768	31.6	0.661	1.25E-04	3 923	22895	26	3.69	103.55					0.5	8				8.5	<u>12</u>	0.512	4.4	0.006528	
24 ABSENCE Big 1 ONS 768 31.6 0.681 1.75.04 2 9.3 22895 26 9.0 30.055 1	3-1 to 3-3	Bldg 3	100%	768	31.6	0.661	1.25E-04	3 923	22895	26	3.69	103.55					0.5	8				8.5			4.4	0.006528	5,916
24 Reserve 8062 3 100% 798 316 0651 1.25C04 1 9 93 22985 26 30.9 100.55	ETC-1	ETC	100%	768	31.6	0.661	1.25E-04	1 923	22895	26	3.69	103.55					0.5	8				8.5	12	0.512	4.4	0.002176	1,972
3.4 Reserve Reg 1 1006, 768 11.6 0.661 1.256-04 1 921, 2256 2 8 100 93.55	1-6 and 1-7 Reserve	Bldg 1	100%	768	31.6	0.661	1.25E-04	2 923	22895	26	3.69	103.55					0.5	8				8.5	12	0.512	4.4	0.004352	
ETC Server FTC 100% 78 31.6 0.61 1.255-0.4 1 923 22895 8 369 0.355 0.055 0.055 0.055 0.055	2-4 Reserve	Bldg 2	100%	768	31.6	0.661	1.25E-04	1 923	22895	26	3.69	103.55					0.5	8				8.5	12	0.512	4.4	0.002176	
13-10-1-16-1-16-1-16-1-16-1-16-1-16-1-16	3-4 Reserve	Bldg 3	100%	768	31.6	0.661		1 923	22895	26	3.69	103.55					0.5	8				8.5			4.4		
1-11-01-5	ETC-2 Reserve	ETC	100%	768	31.6	0.661	1.25E-04	1 923	22895	26	3.69	103.55					0.5	8				8.5	<u>12</u>	0.512	4.4	0.002176	1,972
24 10 24 10	D1 . Idle During Eme	ergency Outag	es (24 hrs/	'day)											dle During	Outages (2	4 hrs/day)										
## 10-33 6163 10% 584 7.9 0.661 2.48469 3 592 5741 26 3.69 5.56 0 0 0 0 0 0 0 0 0 0 4 4 4 24 0.4222 1.7 0.002334 540 ## 17 10% 584 7.9 0.661 7.91659 2 592 5741 26 3.69 2.56 0 0 0 0 0 0 0 0 0 2.2 1 13 24 0.4222 1.7 0.002524 1.75 ## 17 10% 584 7.9 0.661 1.52664 1.52 5741 26 3.69 2.56 0 0 0 0 0 0 0 0 0 2.2 1 13 24 0.4222 1.7 0.00525 1.175 ## 18 1.52	1-1 to 1-5	Bldg 1	10%	584	7.9	0.661	2.43E-05	5 592	5741	26	3.69	25.96	0	0	0	0	0	0	0	0	4	4	24	0.4224	1.7	0.004224	900
ETC1	2-1 to 2-3	Bldg 2	10%	584	7.9	0.661	2.43E-05	3 592	5741	26	3.69	25.96	0	0	0	0	0	0	0	0	4	4	24	0.4224	1.7	0.002534	
1-5 and 1-7 Reserve Bids 1.0% 584 7.9 0.661 1.525 0.05 0.05 0	3-1 to 3-3	Bldg 3	10%	584	7.9	0.661	2.43E-05	3 592	5741	26	3.69	25.96	0	0	0	0	0	0	0	0	4	4	24	0.4224	1.7	0.002534	
24 Reserve Bildy 2 10% 584 7.9 0.661 132E06 1 592 5741 26 3.69 25.96 0 0 0 0 0 0 0 0 24 1 25 24 0.0224 10.6 0.00528 1.125 ETC Reserve Bildy 3 10% 584 7.9 0.661 132E06 1 592 5741 26 3.69 25.96 0 0 0 0 0 0 0 0 0 24 1 25 24 0.0224 10.6 0.00528 1.125 ETC Reserve Bildy 3 10% 584 7.9 0.661 132E06 1 592 5741 26 3.69 25.96 0 0 0 0 0 0 0 0 0 24 1 25 24 0.0224 10.6 0.00528 1.125 ETC Reserve Bildy 3 10% 584 7.9 0.661 132E06 1 592 5741 26 3.69 25.96 0 0 0 0 0 0 0 0 0 0 0 24 1 25 24 0.0224 10.6 0.00528 1.125 1.1	ETC-1	ETC	10%	584	7.9	0.661	2.43E-05	1 592	5741	26	3.69	25.96	0	0	0	0	0	0	0	0	4	4	24	0.4224	1.7	0.000845	180
3-1 Reserve Big 3 10% 584 7.9 0.661 1.326.06 1 592 5741 26 3.80 2.596 0 0 0 0 0 0 0 0 0 2.4 1 2.5 24 0.4224 1.0 0.00528 1.1.25 02. Idle During Testing (Daytime Conty)	1-6 and 1-7 Reserve	Bldg 1	10%	584	7.9	0.661	7.91E-05	2 592	5741	26	3.69	25.96	0	0	0	0	0	0	0	12	1	13	24	0.4224	5.5	0.005491	1,170
FITC 10% 584 7.9 0.651 1.32E-04 1 59. 59.1 36 1.59. 59.1 36 1.59. 25.9 0.0	2-4 Reserve	Bldg 2	10%	584	7.9	0.661	1.52E-04	1 592	5741	26	3.69	25.96	0	0	0	0	0	0	0	24	1	25	24	0.4224	10.6	0.00528	1,125
D2_Idle During Testing (Daytime Only) Testing (Daytime Only) Testing (Daytime Only)	3-4 Reserve	Bldg 3	10%	584	7.9	0.661	1.52E-04	1 592	5741	26	3.69	25.96	0	0	0	0	0	0	0	24	1	25	24	0.4224	10.6	0.00528	1,125
1:10:15 10:1	ETC-2 Reserve	ETC	10%	584	7.9	0.661	1.52E-04	1 592	5741	26	3.69	25.96	0	0	0	0	0	0	0	24	1	25	24	0.4224	10.6	0.00528	1,125
2-110-23 Bidg 2 10% 584 7.9 0.661 3.47E-04 3 592 5741 26 3.69 25.96 20 3 0 0 0 0 0 0 5.5 28.5 12 0.4224 12.0 0.018058 3.848 3.98	D2 _ Idle During Test	ting (Daytime	Only)											lo	lle During T	esting (Da	ytime Only)										
3-10-3-3 Bidg 3 10% 584 7.9 0.661 3.47E-04 1 592 5741 26 3.69 25.96 20 3 0 0 0 0 0 0 5.55 28.5 12 0.4224 12.0 0.018058 3.848 EFT C 1 ETC 10% 584 7.9 0.661 3.47E-04 1 592 5741 26 3.69 25.96 20 3 0 0 0 0 0 0 5.55 28.5 12 0.4224 12.0 0.006019 1.288 1-6 1.288 1-7 1.288	1-1 to 1-5	Bldg 1	10%	584	7.9	0.661	3.47E-04	5 592	5741	26	3.69	25.96	20	3	0	0	0	0	0	0	5.5	28.5	12	0.4224	12.0	0.030096	6,413
ETC-1 ETC 10% 584 7-9 0.661 3.47E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 12.0 0.006019 1.283 1.6 and 17-Reserve Bidg 1 10% 584 7-9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.007507 3.645 1.823 3.4 Reserve Bidg 3 10% 584 7-9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.007507 3.645 1.823 3.4 Reserve Bidg 3 10% 584 7-9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.007507 3.645 1.823 3.4 Reserve Bidg 3 10% 584 7-9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 5.0 Reserve Bidg 3 10% 584 7-9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 5.0 Reserve Bidg 3 10% 584 7-9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 5.0 Reserve Bidg 3 10.0 Stack Testing + Commissioning (Daytime Only)	2-1 to 2-3	Bldg 2	10%	584	7.9	0.661	3.47E-04	3 592	5741	26	3.69	25.96	20	3	0	0	0	0	0	0	5.5	28.5	12	0.4224	12.0	0.018058	3,848
1-6 and 1-7 Reserve Bidg 1 10% 584 7-9 0.661 4.93EO4 2 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.017107 3.645 24 Reserve Bidg 3 10% 584 7-9 0.661 4.93EO4 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 ETC-2 Reserve ETC 10% 584 7-9 0.661 4.93EO4 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 ETC-2 Reserve ETC 10% 584 7-9 0.661 4.93EO4 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 ETC-2 Reserve ETC 10% 584 7-9 0.661 4.93EO4 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 ETC-2 Reserve ETC 10% 584 7-9 0.661 4.93EO4 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 New Group E - 100% Load During Stack Testing + Commissioning (Daytime Only) Facility Gens Engine Exit Velocity Stack Dia Reserve Bidg 1 100% 768 31.6 0.661 5.67E-05 3 923 22895 26 3.69 103.55 0.519 3.33 1	3-1 to 3-3	Bldg 3	10%	584	7.9	0.661	3.47E-04	3 592	5741	26	3.69	25.96	20	3	0	0	0	0	0	0	5.5	28.5	12	0.4224	12.0	0.018058	3,848
2-4 Reserve Bidg 2 10% 584 7.9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 3-4 Reserve Bidg 3 10% 584 7.9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 Reserve ETC 10% 584 7.9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 Reserve Bidg 3 10% 584 7.9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 Reserve Bidg 3 10% 584 7.9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 Reserve Bidg 4 7.9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1.823 Reserve Bidg 5 100% 768 31.6 0.661 5.67E-05 3 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 1 100% 768 31.6 0.661 5.67E-05 3 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 1 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 1 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 1 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 1 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 2 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 2 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 1 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 2 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 3 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 3 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 3 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 3 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 3 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 Reserve Bidg 3 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69	ETC-1	ETC	10%	584	7.9	0.661	3.47E-04	1 592	5741	26	3.69	25.96	20	3	0	0	0	0	0	0	5.5	28.5	12	0.4224	12.0	0.006019	1,283
3-4 Reserve Bidg 3 10% 584 7.9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1,823 ETC-2 Reserve ETC 10% 584 7.9 0.661 4.93E-04 1 592 5741 26 3.69 25.96 20 3 3 6 8 0 0.5 40.5 12 0.4224 17.1 0.008554 1,823 New Group E - 100% Load During Stack Testing + Commissioning (Daytime Only) Exit Exit Velocity Exit Velocity Stack Dia Rate per Engine Exit Velocity Stack Dia Rate per Engine Exit Velocity Stack Dia Rate per Engine Stack Dia Stack	1-6 and 1-7 Reserve	Bldg 1	10%	584	7.9	0.661	4.93E-04	2 592	5741	26	3.69	25.96	20	3	3	6			8	0	0.5	40.5	<u>12</u>	0.4224	17.1	0.017107	3,645
ETC-2 Reserve	2-4 Reserve	Bldg 2	10%	584	7.9	0.661	4.93E-04	1 592	5741	26	3.69	25.96	20	3	3	6			8	0	0.5	40.5	12	0.4224	17.1	0.008554	1,823
New Group E - 100% Load During Stack Testing + Commissioning (Daytime Only) Exit	3-4 Reserve	Bldg 3	10%	584	7.9	0.661	4.93E-04	1 592	5741	26	3.69	25.96	20	3	3	6			8	0	0.5	40.5	12	0.4224	17.1	0.008554	1,823
Red Facility Fac	ETC-2 Reserve	ETC	10%	584	7.9	0.661	4.93E-04	1 592	5741	26	3.69	25.96	20	3	3	6			8	0	0.5	40.5	12	0.4224	17.1	0.008554	1,823
Red Facility Fac	New Group E - 1009/	Load During	Stack Tosti	ng + Comm	niccioning /D	autimo Oak	1						100%	Load Durin	a Stack Tar	ting + Com	missionina	(Daytime)	Only)								
Figure Exit Velocity Stack Dia Annual-Avg DPM Rate per Engine Gens # Velocity Gens F ACFM Inches F2 Fps Comm Testing Q A-F A-Step Corr De-En Outage Cool Total hrs/yr Hrs/day Ibs/hr Ib	ivew Gloup E - 100%	T During 3	JUNEAU LESUI	ng + Comm	II SIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		1						100%	LOAU DUITIN	g Stack Tes	suig + con	IIIIISSIUIIINg	(Daytime t	I I		1	1	1	 			
Figure Exit Velocity Stack Dia Annual-Avg DPM Rate per Engine Gens # Velocity Gens F ACFM Inches F2 Fps Comm Testing Q A-F A-Step Corr De-En Outage Cool Total hrs/yr Hrs/day Ibs/hr Ib							1										1				1			Each	Each	Facility	
Cen # Gen Are Load Temp (K) (m/sec) (m) (g/sec) (m) (m/sec) (m) (g/sec) (m) (g/sec) (m) (g/sec) (m) (g/sec) (m) (g/sec) (m) (m/sec)					Exit		Annual-Avg DPM										1				1			1			Facility-
Gen ## Gen Area Load Temp (K) (m/sec) (m) (g/sec) Gens F ACFM Inches ft2 fps Comm Testing Q A-F A-Step Corr De-En Outage Cool Total hrs/yr Hrs/day lbs/hr Ibs/hr Tons/yr Gal/Year 1-1 to 1-5 Bidg 1 100% 768 31.6 0.661 5.67E-05 5 93 22895 26 3.69 103.55 0.519 3.33			Engine	Exit		Stack Dia		No. Temp		Dia	Area	Velocity	1/70	1/3 Stack			1						AERMOD				
1-1 to 1-5 Bldg 1 100% 768 31.6 0.661 5.67E-05 5 923 22895 26 3.69 103.55 0.519 3.33	Gen#	Gen Area	_			1			ACFM						Q	A-F	A-Sten	Corr	De-En	Outage	Cool	Total hrs/vr					
2-1 to 2-3 8 ldg 2 100% 768 31.6 0.661 5.67E-05 3 923 22895 26 3.69 103.55 0.519 3.33										_	_						1,		T		T						
3-1 to 3-3 Bldg 3 100% 768 31.6 0.661 5.67E-05 3 923 22895 26 3.69 103.55 0.519 3.33 3 3.849 12 0.512 1.97 0.002956 2,679 ETC-1 ETC 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 3 3.849 12 0.512 1.97 0.000985 893 1.6 and 1-7 Reserve Bldg 1 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 3 3 3 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 4 8 5 12 0.512 1.97 0.000985 183 3 5 12 0.																	1										
ETC-1 ETC 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33											_			_			1										
1-6 and 1-7 Reserve Bldg 1 100% 768 31.6 0.661 5.67E-05 2 923 22895 26 3.69 103.55 0.519 3.33 3.849 12 0.512 1.97 0.001971 1,786 2.4 Reserve Bldg 2 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 3.849 12 0.512 1.97 0.000985 893 3.4 Reserve Bldg 3 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 3.849 12 0.512 1.97 0.000985 893 ETC-2 Reserve ETC 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 3.849 12 0.512 1.97 0.000985 893 1.97 0.000985 893 1.97 0.000985 893 1.97 0.000985 893 1.97 0.000985 893 1.97								-									1										
2-4 Reserve Bldg 2 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33																	i e		1								
3-4 Reserve Bidg 3 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33																	i e		1								
ETC-2 Reserve ETC 100% 768 31.6 0.661 5.67E-05 1 923 22895 26 3.69 103.55 0.519 3.33 3.849 12 0.512 1.97 0.000985 893														_			1										
acility-Wide Incl. Startup and Stack 0.306 181,305																	i e		1								
				,	, -2.0	, 2.001		, ,,																2.512	1.57		555
																							acility-Wide I	ncl. Startun	and Stack	0.306	181,305
																										0.289	

1

G:\Seattle\PNWProjects\PACLAND\ -11 Riker Data Center\03 Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input -Revised DEEP-NOX-NO2 jmw 10-11-2012.xls]AA2-Sep-2012 DEEP AERM

Revised NO2 Limit (Higher idle emissions during 30 min weekly testing)

AERMOD File: Vantage Annual DPM_S_Sep Rev

AERMOD File (full grid for 20080: Vantage Annual DPM_AA2_Oct2012

AERMOD Output:

	Maximum		Max along pro	pperty	Max near SW home
Year	Conc.	Location	Conc.	Location	Conc.
2004	0.0417	Building 1	0.028	South Boundary	0.020
2005	0.0438	Building 1	0.030	South Boundary	0.020
2006	0.0381	Office B	0.027	East Boundary next to Bldg 3	0.019
2007	0.0386	Office B	0.032	East Boundary next to Bldg 3	0.022
2008	0.0475	Building 1	0.042	East Boundary next to Bldg 3	0.031

2008 AERMOD Output:

	Maximum	
_	Conc.	Location
_	0.047	Point of max impact - rooftop of Building 1
	0.047	MICR - Building 1
	0.042	MIBR - along east property, approximately 360 meters from north fenceline
	0.031	MIRR - at closest property line (SW home)
	0.018	MIRR - at house structure (SW home)
	0.026	Maximum off-site impacted bussiness/office (Sabey)
_	0.009	SE home
-		

TABLE BB2. Sep-2012; Increased Idle Emissions; 24-hr PM10 AERMOD Input for Full Power Outage

G:\Seattle\PNWProjects\PACLAND\ -11 Riker Data Center\03 Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input -Revised DEEP-NOX-NO2 jmw 10-11-2012.xls]BB2-Sep2012 24hr PM10 AERM

																Hou	ırs/Day a	t Each	Runtime	Mode									
																								Each	Each	Each	Each	Facility	
				Exit																				Genset	Genset	Genset	Genset	Wide	Facility-
		Engine	Exit	Velocity	Stack Dia	24-Hr PM10 Rate	No	Temp		Dia	Area	Velocity										Total hrs in	AERMOD	PM10	Fuel	NOX	PM10	PM10	Wide Fuel
Gen#	Gen Area	Load	Temp (K)	(m/sec)	(m)	per Engine (g/sec)	Gens	F	ACFM	Inches	ft2	fps	W	М	Q	A-F	A-Step	Corr	De-En	Outage	Cool	Max Day	Hrs/day	lbs/hr	Gal/Hr	lbs/hr	lbs/DAY	lbs/DAY	Gal/DAY
Unplanned Outage + Stor	rm Avoidance													Unpl	lanned (Outage + S	orm Avoid	ance											
1-1 to 1-5	Bldg 1	81%	720	29.2	0.661	4.99E-02	5	836	21208	26	3.69	95.92								24		24	<u>24</u>	0.396	195	12.5	9.5	47.5	23,400
2-1 to 2-3	Bldg 2	90%	742	30.3	0.661	5.68E-02	3	877	22000	26	3.69	99.50								24		24	24	0.45	213	14.6	10.8	32.4	15,336
3-1 to 3-3	Bldg 3	90%	742	30.3	0.661	5.68E-02	3	877	22000	26	3.69	99.50								24		24	<u>24</u>	0.45	213	14.6	10.8	32.4	15,336
ETC-1	ETC	93%	750	30.7	0.661	5.93E-02	1	891	22273	26	3.69	100.73								24		24	<u>24</u>	0.47	220	15.4	11.3	11.3	5,280
10% Idle																Zero Idl	2												
1-6 and 1-7 Reserve	Bldg 1	10%	584	7.9	0.661	5.08E-02	2	592	5741	26	3.69	25.96								24		24	<u>24</u>	0.4028	45	3.12	9.7	19.3	2,160
2-4 Reserve	Bldg 2	10%	584	7.9	0.661	5.08E-02	1	592	5741	26	3.69	25.96								24		24	<u>24</u>	0.4028	45	3.12	9.7	9.7	1,080
3-4 Reserve	Bldg 3	10%	584	7.9	0.661	5.08E-02	1	592	5741	26	3.69	25.96								24		24	<u>24</u>	0.4028	45	3.12	9.7	9.7	1,080
ETC-2 Reserve	ETC	10%	584	7.9	0.661	5.08E-02	1	592	5741	26	3.69	25.96								24		24	<u>24</u>	0.4028	45	3.12	9.7	9.7	1,080

 Changed by Belle
 Facility-Wide Emissions
 172
 64,752

 Ibs/DAY
 gal/DAY

G:\Seattle\PNWProjects\PACLAND_-11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xis]BB2-Sep2012_24hr PM10 AERM

1

Vantage Data Center - 24hr PM10 NAAQS

KLK 10-14-2012

24-hr PM10 during Full Power Outage (Increased Idle Emissions)

AERMOD File: Vantage 24hr PM10 Outage_BB2_Oct2012

AERMOD Output:

Average	Conc/Dep.	East(X)	North(Y)	Year	
1ST-HIGHEST 24-HR	20.78	287077	5236748	2005	
1ST-HIGHEST 24-HR	18.71	287068	5236742	2005	
1ST-HIGHEST 24-HR	17.90	287068	5236742	2006	
1ST-HIGHEST 24-HR	23.64	287068	5236742	2007	
1ST-HIGHEST 24-HR	28.38	287068	5236742	2008	Rooftop of Building

G:\Seattle\PNWProjects\PACLAND__-11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xls]FF2-Sep12_NO2 Bldg3 Test 30 min

PM2.5-NAAQS Modeling for Scheduled Maintenance: De-Energized Full-Building Maintenance

Changed by Belle, 12/3

G:\Seattle\PNWProjects\PACLAND__-11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw__10-11-2012.xls\]CC2 Sep2012 PM2.5-Maint

TABLE CC2 - SEP 2012, INCRTERASED PER-GENSET IDLE LOAD EMISSIONS, BUT SHUTTING DOWN ONE RESERVE GENSET AFTER 15 MINUTES

Maximum 24-Hour PM2.5 Emission Rates and Stack Parameters for De-energized Full-Building Maintenance at Data Center 1 (Riker Data Center)

								_								Hours	/Year at	Each R	untime N	1ode						
								1															Worst			
																							Case		Each	Facility
					Exit		1st-Highest 24-hr																Emission		Genset	Wide
		Gen	Engine	Exit	Velocity	Stack Dia	PM2.5 Rate per	No. Tem)	Dia	Area	Velocity											Hours on	AERMOD	DPM	DPM
	Gen#	Area	Load	Temp (K)	(m/sec)	(m)	Engine (g/sec)	Gens F	ACFM	Inches	ft2	fps	W	М	Q	A-F	A-Step	Corr	De-En	Outage	Cool	Total hrs/day	One Day	Hrs/day	lbs/hr	lbs/day
De-er	ergized Maintenar	nce at Full	Outage Loa	ds											De-en	ergized Ma	intenance	at Full O	utage Load	S						
	1-1 to 1-5	Bldg 1	81%	720	29.2	0.661	0.0333	5 836	21208	26	3.69	95.92			0	0			8			8	8	12	0.396	3.168
Zero	Idle																Zero Idle	:								
	1-1 to 1-5	Bldg 1	10%	584	7.9	0.661	0.0021	5 592	5741	26	3.69	25.96							0		0.5	0.5	0.5	<u>12</u>	0.4028	0.2014
1-6	and 1-7 Reserve	Bldg 1	10%	584	7.9	0.661	0.0339	2 592	5741	26	3.69	25.96							4		0	4	8	12	0.4028	3.2224

Annual Days Per Year at Data Center 1 4 1 1

ide Emissions 6.592 lbs/day PM2.5 0.0346 g/sec

G:\Seattle\PNWProjects\PACLAND__:11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xls](C2 Sep2012 PM2.5-Maint

1

Vantage Data Center - 24hr PM2.5 NAAQS

24-hr PM2.5 for Scheduled Maintenance: De-Energized Full-Building Maintenance

AERMOD File: Bldg1 24hr PM25 Maintain_CC2_Oct2012

AERMOD Output:

Average	Conc/Dep.	East(X)	North(Y)	Year	
1ST-HIGHEST 24-HR	6.65	287102	5236766	2005	Roof top of Building 1
1ST-HIGHEST 24-HR	5.02	287068	5236742	2005	
1ST-HIGHEST 24-HR	4.90	287068	5236742	2006	
1ST-HIGHEST 24-HR	5.15	287068	5236742	2007	
1ST-HIGHEST 24-HR	6.60	287068	5236742	2008	

G:\Seattle\PNWProjects\PACLAND__-11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xls]FF2-Sep12_NO2 Bldg3 Test 30 min

DD2 - SEP-2012_NO2-ASIL DURING POWER OUTAGE, RESERVE GENSETS AT IDLE WITH INCREASE NOX AND NO2

Revised NO2 Limit (Higher idle emissions - Lower emissions at high loads) - Aug 2012

AERMOD File: Vantage 1hr NO2 Outage_Rev Limit v2

PVMRM: NO2/NOx Ratio = see table below; Equilibrium Ratio = 0.9.

Sta	ck Input:										Jim's notes	9-18-2012
	Source ID	Source Description	Easting (X)	Northing (Y)	Base Elevation	Stack Height	Temperature	Exit Velocity	Stack Diameter	NOX	Primary NO2	Stack NO2:NOx Mass Ratio
			(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(lb/hr)	(lb/hr)	
1	1_1	81% Load	287054.05	5236880.14	402.336	12.4968	720	29.2	0.6604	12.5	0.95	7.6%
2	1_2	81% Load	287057.12	5236875.48	402.336	12.4968	720	29.2	0.6604	12.5	0.95	7.6%
3	1_3	81% Load	287061.43	5236868.98	402.336	12.4968	720	29.2	0.6604	12.5	0.95	7.6%
4	1_4	81% Load	287065.53	5236862.87	402.336	12.4968	720	29.2	0.6604	12.5	0.95	7.6%
5	1_5	81% Load	287069.59	5236856.78	402.336	12.4968	720	29.2	0.6604	12.5	0.95	7.6%
6	1_6R	10% Load	287073.68	5236850.63	402.336	12.4968	584	7.9	0.6604	3.73	1.19	31.9%
7	1_7R	10% Load	287077.74	5236844.57	402.336	12.4968	584	7.9	0.6604	3.73	1.19	31.9%
8	2_1	90% Load	287173.92	5237286.15	406.2984	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
9	2_2	90% Load	287165.37	5237280.84	406.2984	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
10	2_3	90% Load	287156.44	5237275.28	406.2984	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
	2_4R	10% Load	287147.9	5237269.94	406.2984	12.4968	584	7.9	0.6604	3.73	1.19	31.9%
12	3_1	90% Load	287136.21	5237037.04	403.86	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
13	3_2	90% Load	287144.21	5237030.91	403.86	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
14	3_3	90% Load	287152.15	5237024.82	403.86	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
	3_4R	10% Load	287160.17	5237018.74	403.86	12.4968	584	7.9	0.6604	3.73	1.19	31.9%
	ETC_1	93% Load	287063.11	5237220.51	406.6032	13.3502	750	30.7	0.6604	15.4	1.1	7.1%
17	ETC_2R	10% Load	287056.99	5237227.29	406.6032	13.3502	584	7.9	0.6604	3.73	1.19	31.9%
										184.15	18.16	

G:\Seattle\PNWProjects\PACLAND__-11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xls]DD2-Sep12 Outage NO2-ASIL

Vantage Data Center - 1hr NO2 ASIL

KLK 10-14-2012

Revised NO2 Limit (Higher idle emissions - Lower emissions at high loads)

AERMOD File: Vantage 1hr NO2 Outage_DD2_Oct2012 PVMRM: NO2/NOx Ratio = 0.1; Equilibrium Ratio = 0.9.

Stack Input	:									Jim's notes 9-1	.8-2012
Source ID	Source Description	Easting (X)	Northing (Y)	Base Elevation	Stack Height	Temperature	Exit Velocity	Stack Diameter	NOX	Primary NO2	NO2:NOx Ratio
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(lb/hr)	(lb/hr)	
1_1	81% Load	287054.05	5236880.14	402.34	12.4968	720	29.2	0.6604	12.5	0.95	7.6%
1_2	81% Load	287057.12	5236875.48	402.34	12.4968	720	29.2	0.6604	12.5	0.95	7.6%
1_3	81% Load	287061.43	5236868.98	402.34	12.4968	720	29.2	0.6604	12.5	0.95	7.6%
1_4	81% Load	287065.53	5236862.87	402.34	12.4968	720	29.2	0.6604	12.5	0.95	7.6%
1_5	81% Load	287069.59	5236856.78	402.34	12.4968	720	29.2	0.6604	12.5	0.95	7.6%
1_6R	10% Load	287073.68	5236850.63	402.34	12.4968	584	7.9	0.6604	3.73	1.19	31.9%
1_7R	10% Load	287077.74	5236844.57	402.34	12.4968	584	7.9	0.6604	3.73	1.19	31.9%
2_1	90% Load	287173.92	5237286.15	406.30	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
2_2	90% Load	287165.37	5237280.84	406.30	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
2_3	90% Load	287156.44	5237275.28	406.30	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
2_4R	10% Load	287147.9	5237269.94	406.30	12.4968	584	7.9	0.6604	3.73	1.19	31.9%
3_1	90% Load	287136.21	5237037.04	403.86	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
3_2	90% Load	287144.21	5237030.91	403.86	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
3_3	90% Load	287152.15	5237024.82	403.86	12.4968	742	30.3	0.6604	14.6	1.06	7.3%
3_4R	10% Load	287160.17	5237018.74	403.86	12.4968	584	7.9	0.6604	3.73	1.19	31.9%
ETC_1	93% Load	287063.11	5237220.51	406.60	13.3502	750	30.7	0.6604	15.4	1.1	7.1%
ETC_2R	10% Load	287056.99	5237227.29	406.60	13.3502	584	7.9	0.6604	3.73	1.19	31.9%

AERMOD Output:

ALIMIOD Catput.					
Average	Conc/Dep.	East(X)	North(Y)	Year	
1ST-HIGHEST MAX DAILY 1-HR	336	287096	5236775	2004	
1ST-HIGHEST MAX DAILY 1-HR	351	286999	5236686	2005	
1ST-HIGHEST MAX DAILY 1-HR	342	286994	5236693	2006	
1ST-HIGHEST MAX DAILY 1-HR	335	287090	5236784	2007	
1ST-HIGHEST MAX DAILY 1-HR	345	287004	5236678	2008	

Along SW fenceline

FF2-Vantage Data Center - Sep-2012, NO2 NAAQS, Bldg 3 with 30-minute test and Elm's Nox/NO2 limits Revised NO2 Limit (Higher idle emissions during 30 min weekly testing) - Sep 2012

Stack Run Time: 7 am to 6 pm

Stack Inpu	ıt:								Jim's notes	9-18-12 (30 mi	nute test)
Source ID	Source Description	Easting (X	Northing ((\Base Elev	/al Stack H	eigł Temper	atu Exit Velo	cit Stack Diam	Prim NOX	Prim NO2	NO2:NOX Ratio
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(lb/hr)	(lb/hr)	
3_1	weekly testing 10% load	287136.2	5237037	403.86	12.5	584	7.9	0.6604	4.87	0.88	18.1%
3_2	weekly testing 10% load	287144.2	5237031	403.86	12.5	584	7.9	0.6604	4.87	0.88	18.1%
3_3	weekly testing 10% load	287152.2	5237025	403.86	12.5	584	7.9	0.6604	4.87	0.88	18.1%
									14.61	2.64	

G:\Seattle\PNWProjects\PACLAND__-11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xls]FF2-Sep12_NO2 Bldg3 Test 30 min

Revised NO2 Limit (Higher idle emissions during 30 min weekly testing)

AERMOD File: Bldg3 1hr NO2 30min Test_FF2_Oct2012 PVMRM: NO2/NOx Ratio = 0.181; Equilibrium Ratio = 0.9.

Stack Run Time: 7 am to 6 pm

Stack Inpu	t:								Jim's note	es 9-18-12 (3	30 minute test)
Source ID	Source Description	Easting (X)	Northing (Y)	Base Elevation	Stack Height	Temperature	Exit Velocity	Stack Diameter	Prim NOX	Prim NO2	NO2:NOX Ratio
		(m)	(m)	(m)	(m)	(K)	(m/s)	(m)	(lb/hr)	(lb/hr)	
3_1	weekly testing 10% load	287136.2	5237037.0	403.9	12.5	584	7.9	0.6604	4.87	0.88	18.1%
3_2	weekly testing 10% load	287144.2	5237030.9	403.9	12.5	584	7.9	0.6604	4.87	0.88	18.1%
3_3	weekly testing 10% load	287152.2	5237024.8	403.9	12.5	584	7.9	0.6604	4.87	0.88	18.1%

1-hr NO2 impact for 30-minute test: 243 ug/m3 x (30 min / 60 min) = 122 ug/m3

3-Year Average					
Rank	Ave. Conc.	East(X)	North(Y)	Years	
1st	243	287303	5237047	2005-2007	Along east fenceline, next to building 3
2nd	229	287303	5237047	2005-2007	, nong case reneeme, next to bananing s
3rd	222	287303	5237047	2005-2007	
314	222	287303	3237047	2003-2007	
AERMOD Output:					
Average	Conc/Dep.	East(X)	North(Y)	Year	
1ST-HIGHEST MAX DAILY 1-HR	263	287303	5237037	2004	
2ND-HIGHEST MAX DAILY 1-HR	246	287303	5237037	2004	
3RD-HIGHEST MAX DAILY 1-HR	220	287303	5237047	2004	
4TH-HIGHEST MAX DAILY 1-HR	212	287303	5237047	2004	
5TH-HIGHEST MAX DAILY 1-HR	209	287303	5237047	2004	
6TH-HIGHEST MAX DAILY 1-HR	194	287303	5237057	2004	
7TH-HIGHEST MAX DAILY 1-HR	192	287303	5237057	2004	
8TH-HIGHEST MAX DAILY 1-HR	191	287303	5237057	2004	
9TH-HIGHEST MAX DAILY 1-HR	180	287303	5237057	2004	
10TH-HIGHEST MAX DAILY 1-HR	177	287303	5237057	2004	<u>_</u>
1ST-HIGHEST MAX DAILY 1-HR	257	287303	5237047	2005	
2ND-HIGHEST MAX DAILY 1-HR	250	287303	5237037	2005	
3RD-HIGHEST MAX DAILY 1-HR	231	287303	5237047	2005	
4TH-HIGHEST MAX DAILY 1-HR	229	287303	5237037	2005	
5TH-HIGHEST MAX DAILY 1-HR	223	287303	5237047	2005	
6TH-HIGHEST MAX DAILY 1-HR	222	287303	5237047	2005	
7TH-HIGHEST MAX DAILY 1-HR	197	287303	5237047	2005	
8TH-HIGHEST MAX DAILY 1-HR	189	287303	5237047	2005	
9TH-HIGHEST MAX DAILY 1-HR	188	287303	5237047	2005	
10TH-HIGHEST MAX DAILY 1-HR	183	287303	5237047	2005	<u>_</u>
1ST-HIGHEST MAX DAILY 1-HR	232	287303	5237047	2006	
2ND-HIGHEST MAX DAILY 1-HR	224	287303	5237047	2006	
3RD-HIGHEST MAX DAILY 1-HR	217	287303	5237047	2006	
4TH-HIGHEST MAX DAILY 1-HR	201	287303	5237047	2006	
5TH-HIGHEST MAX DAILY 1-HR	196	287303	5237047	2006	
6TH-HIGHEST MAX DAILY 1-HR	193	287303	5237047	2006	
7TH-HIGHEST MAX DAILY 1-HR	187	287303	5237047	2006	
8TH-HIGHEST MAX DAILY 1-HR	180	287303	5237047	2006	
9TH-HIGHEST MAX DAILY 1-HR	179	287303	5237047	2006	
10TH-HIGHEST MAX DAILY 1-HR	173	287303	5237047	2006	=
1ST-HIGHEST MAX DAILY 1-HR	241	287303	5237047	2007	
2ND-HIGHEST MAX DAILY 1-HR	232	287303	5237047	2007	
3RD-HIGHEST MAX DAILY 1-HR	227	287303	5237047	2007	
4TH-HIGHEST MAX DAILY 1-HR	216	287303	5237047	2007	
5TH-HIGHEST MAX DAILY 1-HR	207	287303	5237037	2007	
6TH-HIGHEST MAX DAILY 1-HR	200	287303	5237047	2007	
7TH-HIGHEST MAX DAILY 1-HR	191	287303	5237047	2007	
8TH-HIGHEST MAX DAILY 1-HR	190	287303	5237047	2007	
9TH-HIGHEST MAX DAILY 1-HR	189	287303	5237047	2007	
10TH-HIGHEST MAX DAILY 1-HR	185	287303	5237047	2007	_
1ST-HIGHEST MAX DAILY 1-HR	233	287303	5237047	2008	
2ND-HIGHEST MAX DAILY 1-HR	226	287303	5237047	2008	
3RD-HIGHEST MAX DAILY 1-HR	221	287303	5237047	2008	
4TH-HIGHEST MAX DAILY 1-HR	218	287303	5237047	2008	
5TH-HIGHEST MAX DAILY 1-HR	206	287303	5237047	2008	
6TH-HIGHEST MAX DAILY 1-HR	205	287303	5237047	2008	
7TH-HIGHEST MAX DAILY 1-HR	203	287303	5237047	2008	
8TH-HIGHEST MAX DAILY 1-HR	201	287303	5237047	2008	
9TH-HIGHEST MAX DAILY 1-HR	200	287303	5237047	2008	

91H-HIGHEST MAX DAILY 1-HR 200 28/303 523/04/ 2008
10TH-HIGHEST MAX DAILY 1-HR 197 28/303 523/047 2008

G:\Seattle\PNWProjects\PACLAND_-11_Riker Data Center\03_Reports-Analyses\NO2 Requested Revised Emission Limits\[AERMOD-Input_-Revised DEEP-NOX-NO2_jmw_10-11-2012.xls]FF2-Sep12_NO2 Bidg3 Test 30 min

APPENDIX D GENERATOR SPECIFICATIONS AND EMISSION CONTROLS

Table D-1. BACT Capital Cost for MTU AirClarity System (SCR and Catalyzed DPF) Vantage Data Center

Cost Category	Cost Factor	Source of Cost Factor	Quant.	Unit Cost	Subtotal Cost
Direct Costs					
Purchased Equipment Costs					
FOB Purchase Price	As quoted by MTU	MTU	17	\$400,000	\$6,800,000
Instrumentation	Assume no cost	Assume no cost	0	0	0
Sales Tax	WA state tax	WA state tax	6.5%	1	\$442,000
Shipping	0.05A	EPA Cost Manual	2.0%	1	\$340,000
Subtotal Purchased Equipment Cost, P	PEC				\$7,582,000
: : : : : : : : : : : : : : : : : : : :					
Direct Installation Costs					
Enclosure structural supports	Assume no cost	Assume no cost	0	\$0	\$0
Installation	1/2 of EPA Cost Manual	1/2 of EPA Cost Manual	2.5%	1	\$189,550
Electrical	Assume no cost	Assume no cost	0	0	0
Piping	Assume no cost	Assume no cost	0	0	0
Insulation	Assume no cost	Assume no cost	0	0	0
Painting	Assume no cost	Assume no cost	0	0	0
Subtotal Direct Installation Costs					\$189,550
Site Preparation and Buildings (SP)	Assume no cost	Assume no cost	0	0	0
Total Direct Costs, DC (PEC + Direct In	+ Direct Installation + Site Prep)				\$7,771,550
Indirect Costs (Installation)					
Engineering	0.025*PEC	1/4 of EPA Cost Manual	2.5%	1	\$189,550
Construction and field expenses	0.025*PEC	1/2 of EPA Cost Manual	2.5%	1	\$189,550
Contractor Fees	From DIS data center	From DIS data center	%8.9	-	\$532,645
Startup	0.02*PEC	EPA Cost Manual	2.0%	1	\$151,640
Performance Test (Tech support)	0.01*PEC	EPA Cost Manual	1.0%	1	\$75,820
Contingencies	0.03*PEC	EPA Cost Manual	3.0%	1	\$227,460
Subtotal Indirect Costs, IC					\$1,366,665
Total Capital Investmant (TCI = DC+IC)	()				\$9,138,215
				L	

TCI per gen \$537,542

G:\Seattle\PNWProjects\PACLAND__-11_Riker Data Center\03_Reports-Analyses\BACT-Mar-2012\[Riker-BACT_Mar-2012.xls]\Vantage capital Cost

TCI/gen

Item	Quantity	Units	Unit cost	Subtotal		
	Annualized C	Annualized Capital Recovery				
Total Capital Cost				\$9,138,215		TCI/
Capital Recovery Factor, 25 yrs, 4% discount rate	discount rate			0.06401		
Subtotal Annualized 25-year Capital Recovery Cost	Recovery Cost			\$584,937		
	Direct Ar	Direct Annual Costs				
Annual Admin charges	2% of TC	2% of TCI (EPA Manual)	0.02	\$182,764		
Annual Property tax	1% of TC	1% of TCI (EPA Manual)	0.01	\$91,382		
Annual Insurance	1% of TC	1% of TCI (EPA Manual)	0.01	\$91,382		
Annual operation/labor/maintenance costs: Upperbound estimate would assume CARB's value of	s: Upperbound estin	nate would assume CAR	B's value of			
\$3.00/hp/year and would result in \$206,000/year. Lower bound estimate would assume zero annual	00/year. Lower boun	d estimate would assum	e zero annual			
O&M. Mid-range value would account for urea, fuel for pressure drop, increased inspections, periodic	r urea, fuel for pressu	re drop, increased inspe	ctions, periodic			
OEM visits, and the costs for Ecology's in	creased emission tes	sting requirements. For	this screening-			
level analysis we assumed the lower-bo	sumed the lower-bound annual O&M cost of zero.	cost of zero.		\$0		
Subtotal Direct Annual Costs				\$365,529	Combined Pollutants	
Total Annual Cost (Capital Recover	(Capital Recovery + Direct Annual Costs)	il Costs)		\$950,466	Pollutant	ă
Uncontrolled emissions				27.6	Uncontrolled TPY	1
Assumed Control Efficiency				Varies	Controlled TPY	0
Annual Tons Removed				19.92	Tons Removed/Year	1
Cost Effectiveness (\$ per tons combined pollutant destroyed)	nbined pollutant	destroyed)		\$47,714	Overall Removal Effcy	8

Combined Pollutants				
Pollutant	DEEP	00	VOC	XON
Uncontrolled TPY	1.48	2.67	1.14	19.3
Controlled TPY	0.22	1.22	98.0	5.83
Tons Removed/Year	1.26	4.45	0.78	13.43
Overall Removal Effcy	85%	78%	%89	%02

"Reasonableness Cost-Effectiveness" of Acceptable Control Cost vs. Actual Control Cost

	Ecology Acceptable Unit	Ecology Acceptable Unit Forecast Removal	Subtotal A	Subtotal Acceptable Annual
Pollutant	Cost (\$/ton)	(tons/yr)	ő	Cost (\$/year)
XON	\$9,473	13.43	\$127,222 per year	per year
00	\$5,000	4.45	\$22,250	per year
NOC	\$9,473	0.78	686,7\$	per year
PM	\$23,200	1.26	\$29,232	per year
Total Accetable Annual Control Cost for Combined Pollutants	rol Cost for Comb	ined Pollutants	\$186,093	per year
Actual Ann	Actual Annual Control Cost		\$950,466 per year	per year
Is The Control L	Is The Control Device Reasonable?	35	NO (Actua	NO (Actual >> Acceptable)

G:\Seattle\PNWProjects\PACLAND_-11_Riker Data Center\03_Reports-Analyses\BACT-Mar-2012\[Riker-BACT_Mar-2012.xls]\[Vantage Annualized]

DIESEL ENGINE-GENERATOR SET 3000-XC6DT2

3000 kWe / 60 Hz / Standby 480 - 13.8kV

(Reference 2800-XC6DT2 for Prime Rating Technical Data)

SYSTEM RATINGS

Standby

Voltage (L-L)	480V	600V	4160V	12470V	13200V	13800V
Phase	3	3	3	3	3	3
PF	0.8	0.8	0.8	0.8	0.8	0.8
Hz	60	60	60	60	60	60
kW	3000	3000	3000	3000	3000	3000
kVA	3750	3750	3750	3750	3750	3750
AMPS	4511	3609	520	174	164	157
skVA@30%						
Voltage Dip	6400	6800	5250	C/F	C/F	C/F
Generator Model*	1030FDL1005	1030FDS 1015	1020FDM1204	1030FDH1429	1030FDH1429	1030FDH1429
Temp Rise	130 °C/27 °C	125 °C/40 °C	130 °C/27 °C	130 °C/27 °C	130 °C/27 °C	130 °C/27 °C
Connection	6 LEAD WYE					

CERTIFICATIONS AND STANDARDS

Emissions -

Engine-generator set is designed and manufactured

UL 2200 / CSA - Optional

- UL 2200 Listed

_

Performance Assurance Certification (PAC)

- Engine-Generat o ISO 8528-5 f Transient Response

- $\ensuremath{\text{V}}$ rified product design, quality and per

Power Rating

- Accepts Rated Load in One Step Per NFPA 110
- operation is approved up to 85%.

STANDARD FEATURES*

MTU Onsit Global Product Support

20V 4000 Diesel Engine

- 95.4 Liter Displacement
- Common Rail Fuel Injection
- 4-Cy

Generator

- Br
- PMG (P
- 300% Shor
- 2/3 Pitch Windings
- S or 5
- Op

Digital Control Panel(s)

- UL Recognized, CS
- Comple
- L
- Integral Set-Mounted
- Engine Driven Fan

STANDARD EQUIPMENT*

Engine

Air Cleaners
Oil Pump
Oil Drain Extension & S/O Valve
Full Flow Oil Filter
Closed Crankcase Ventilation
Jacket Water Pump
Inter Cooler Water Pump
Thermostats
Blower Fan & Fan Drive
Radiator - Unit Mounted
Electric Starting Motor - 24V
Governor - Electronic Isochronous
Base - Structural Steel
AE Flywheel & Bell Housing
Charging Alternator - 24V
Batt y Bo
Flexible Fuel Connectors
Flexible Exhaust Connection

Generator

and motor	starting	
up to 10 se	econds	
Self-V	ed and Drip-Proof	
Superior V	٧	
	e, Volts-per-Hertz R	
	o, voite per menta n	

No Load to Full Load Regulation
Brushless Alternator with Brushless Pilot Exciter

2 Bearing, Sealed
Flexible Coupling
Full Amortisseur Windings
125% Rotor Balancing
3-Phase Voltage Sensing
±0.25% Voltage Regulation
ed Load - One S
3% Maximum Harmonic Content

Digital Control Panel(s)

Digital Metering

Engine Parameters

Generator Protection Functions

Engine Protection

CAN Bus ECU Communications
s-Based Sof

Remote Communications to RDP-110 Remote Annunciator

16 Programmable Contact Inputs
Up to 11 Contact Outputs
ecognized, CS v

Event Recording
IP 54 Front Panel Rating with Integrated Gasket
NFPA110 Compatible

APPLICATION DATA

Engine		Fuel Co
Model	20V 4000 G83L 6 ECT	
	4-Cy	5% of P
Arrangement	20V	t 50% of P
Displacement: L (in ³	95.4 (5,822)	
Bore: cm (in)	17 (6.69)	
Stroke: cm (in)	21 (8.27)	Cooling
Compression Ratio	16.5:1	
Engine Governor	Electronic Isochronous (ADEC)	
		Maximum A
Speed Regulation	±0.25%	Pressure on
Liquid Capacity (Lubrication)		
	205 (54.2)	
	55 (14.5)	Air Req
	5	
		Aspirating:
Electrical		eo Cooled Unit
Electric Volts DC	24	Remote Cod
Cold Cranking Amps Under -1		e
O p		ed
		Max of 25 °
Fuel System		
uel Supply Connection Size		
n Connection Size		Exhaus
Recommended Fuel	Diesel #2	
		Gas Temp. (

Fuel Consumption

	STA	NDBY
5% of P	5	5
t 50% of P		

Cooling - Radiator System

		STAN	DBY
Maximum Allowable Static			
Pressure on Rad. Exhaust: kP	a (in. H ₂ 0)	0.12 ((0.5)
		,56	
		5	50)
o Coolant: kW	(BTUM)		
:	kW (BTUM)	70 (55,	
o Ambient: kW	' (BTUM)		

Air Requirements

	STANDBY
Aspirating: *m ³	
equired f	
Cooled Unit: *m³	35,36
Remote Cooled Applications;	
equired f	
ed Gen-se	
Max of 25 °F Rise: *m³	40 (29,500)
	3)

Exhaust System

	STANDBY
Gas Temp. (Stack): °C (°F)	525 (977)
Gas Volume at Stack	
Temp: m³	
Maximum Allowable	
Back Pressure: kPa (in. H ₂ 0)	8.5 (34.1)

Drawing above for illustration purposes only, based on standard open power 480 volt engine-generator set. Lengths may vary with other voltages. Do not use for installation design. See website for unit specific template drawings.

System OPU

Dimensions (LxWxH)

7,780 x 2,900 x 3,310 mm (306.38 x 114.13 x 130.5 in)

Weight (less tank)

27,466 kg (60,553 lb)

Weights and dimensions are based on open power units and are estimates only. Consult the factory for accurate weights and dimensions for your specific engine-generator set.

SOUND DATA

Unit Type Standby Full Load
Level 0: Open Power Unit (dBA) 107

Sound data is provided at 7 m (23 ft). Engine-generator set tested in accordance with ISO 8528-10 and with infinite exhaust.

EMISSIONS DATA

NO _x +	NMHC
4.21	

0.52

PM 0.06

All units are in g/hp-hr and are EPA D2 cycle values.

Emission levels of the engine may vary as a function of ambient temperature, barometric pressure, humidity, fuel type and quality, installation parameters, measuring instrumentation, etc. The data provided are laboratory results from one engine representing this rating. The data was obtained under controlled environmental conditions with calibrated instrumentation traceable to the United States National Bureau of Standards and in compliance with US EPA regulations found within 40 CFR Part 89. The weighted cycle value from each engine is guaranteed to be below the US EPA Standards at the US EPA defined conditions.

RATING DEFINITIONS AND CONDITIONS

- // Standby ratings apply to installations served by a reliable utility source. The standby rating is applicable to varying loads for the duration of a power outage. No overload capability for this rating. Ratings are in accordance with ISO 8528-1, ISO 3046-1, BS 5514, AS 2789, and DIN 6271.
- // Deration Factor:

Altitude: Consult your local MTU Onsite Energy Power Generation Distributor for altitude derations.

Temperature: Consult your local MTU Onsite Energy Power Generation Distributor for temperature derations.

Materials and specifications subject to change without notice. **C/F** = Consult Factory/MTU Onsite Energy Distributor

MTU Onsite Energy. Subject to alteration due to technological advances. 2011-06

		Ger	GenAcc Products	rcts
		MATERIAL:		
H	F 10			
COMPONENT WEIGHT CHARL	GEN CHARI	UNIT OF MEASURE:	INCH	
COMPONENT	WEIGHT (LBS)			
DPF HOUSING	3200			
MIXING SPOOL	300	3250/3000/28	3250/3000/2800/2500 EKW MTU TIER IV SYSTEM	/ SYSTEM
ANYMO TIPE	700			
MINING LODE	204	,		
SCRHOUSING	2700	† •	AirClarity 3250	73250
STAND-DPF HSG	1300	7		0500
STAND-SCR HSG	1400	DATE: 8/23/2011	DRAWN BY: ESD	CHANGE LEVEL: 01
DOSING CONTROLLER	450	SCALE: 1/20	DWG SIZE: F	SHEET: 1 OF 1

ELM Permitting Information

9. Narrative of Tier-4 emission control equipment, including vendor-guaranteed removal efficiencies.

The diesel emission control strategy the AirClarity utilizes highly oxidizing precious metal particulate matter filters to control PM, HC, and CO reductions, as well as a Selective Catalytic Reducer coupled with an airless DEF injection system.

The injection system includes reductant tank level monitoring, return and supply flow metering, DPF temperature, SCR temperature (pre and post), DPF backpressure, system backpressure, and SCR outlet NOx sensor; all parameters are logged and will produce alarms should the system operate out of spec. A relative humidity sensor will also be utilized in the system, as humidity has been known to affect engine-out NOx by as much as 15% depending on ambient conditions.

The EnviCat[®] 2055 DPF is a wall flow ceramic Diesel Particulate Filter coated with a Süd-Chemie proprietary precious metal based coating on a cordierite ceramic substrate. The device is designed to filter and passively reduce >95% diesel particulate matter mass found in diesel engine exhaust. Furthermore, carbon monoxide and hydrocarbon emissions in the exhaust are reduced by means of catalytic oxidation. This device does not employ zone coating. The catalyzed DPF is also responsible for reducing hydrocarbons by almost 96%, as well as carbon monoxide reductions of greater than 99% (reductions based on engine baseline and emissions testing at 5-mode average).

The EnviCat[®] 20019 SCR is a flow through ceramic substrate coated with a Süd-Chemie proprietary SCR coating. The SCR is designed to reduce engine out NO_x emissions across a broad range of engine operating conditions.

Vendor-guaranteed removal efficiencies are as follows:

NOx >90%

CO >90%

HC >90%

PM >87%

10. Has the Tier-4 generator achieved CARB certification? If so, provide the certification data.

No. In process.

11. Vendor-estimated purchase price of emission control equipment compared to Tier-2 generators

Estimated \$400,000 increase per Tier-2 generator.

12. Vendor's "Not-to-Exceed" and "Nominal" emission data.

See attached spreadsheets for both "Not-to-Exceed" (NTE) and nominal controlled emissions information.

13. Narrative of cold-start delay time before catalysts reach activation temperature and perform at vendor-guaranteed removal efficiency

The SCR is designed to operate nominally at 900 degrees Fahrenheit, however NOx conversion can be achieved from 300 to 1000 degrees Fahrenheit. Due to the possibility of forming ammonia salts at lower temperatures, DEF will only be injected at 425 degrees Fahrenheit or higher. Should the temperatures exceed 1000 degrees, the system will alarm as temperatures higher than this can result in catalyst degradation and possible destruction of the honeycomb material. Testing on the 20v4000 indicates

we can run at 10% load and dose Urea to reduce NOx. We believe this would happen in under 20 minutes with most conditions having dosing start in less than 15 minutes.

The DPF will reduce PM at all times but should be regenerated when one of the following conditions is met:

- After back pressure readings have reached the maximum allowable backpressure per manufacturers specifications (27" W.C.)
- After 24 idle cold starts of 30-minutes or less and no regeneration has been performed between the cold starts.
- After operation below the recommended regeneration temperature of 300°C for a consecutive period of 720-minutes

Regeneration is accomplished by bringing the engine load level required to achieve a minimum 300°C exhaust gas temperature at the filter inlet and holding for a minimum period of 30-minutes. In testing with the 20v4000 the filters should regen at 10% load unless ambient temperatures are extremely low.

Should the soot loading reach a high level before cold start maximum is reached, the DPF differential pressure sensor will read a high backpressure and the system will alarm. Should the system reach 24 cold starts without reaching the maximum backpressure, the system will alarm and alert the user for the need to regenerate the DPF elements.

14. Can the vendor provide a document of stack test data?

Stack test data (except for particulate and ammonia) are attached for NOx, CO, & HC at 100%, 75%, 50%, 25%, and 10% loads. Final stack test results for ammonia and particulate are expected to be available next week and completed results will be forwarded as soon as they are received.

Memorandum

Date: July 11, 2012

To: Greg Flibbert and Robert Koster, Dept. of Ecology Eastern Regional Office

cc: Mike Duffy, Vantage Data Centers

From: Jim Wilder, P.E.

Subject: Top-Down BACT Assessment

Vantage-Quincy Data Center, Quincy, WA

Introduction

This top-down Best Available Control Technology (BACT) assessment for the Vantage-Quincy Data Center was conducted at the request of Department of Ecology, to supplement the BACT calculations that were submitted with the May 29, 2012 Notice of Construction permit application package. The BACT calculations in the permit application package were limited to evaluating only Vantage's proposed AirClarity emission control system that includes a catalyzed diesel particulate filter (DPF) and a urea-based selective catalytic reduction system (SCR). Ecology requested the supplemental top-down BACT assessment to evaluate the full range of commercially available control technologies. Note, Vantage's proposed AirClarity emission control system is more efficient than any other emission control technology that has been considered for use on data centers in Washington state.

Summary and Conclusion

The proposed diesel engines will emit the following regulated pollutants which are subject to BACT review: nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOCs), particulate matter (PM, PM₁₀ and PM_{2.5}) and sulfur dioxide.

Generators equipped with EPA Tier-2 certified engines were considered the base case for the BACT assessment. The following add-on technologies were considered for the top-down BACT assessment:

- AirClarity System (Catalyzed DPF and SCR) proposed by Vantage
- Catalyzed Diesel Particulate Filter
- Urea-Selective Catalytic Reduction
- Three-Way Catalyst

• Diesel Oxidation Catalyst

All of the add-on technologies are technically feasible. They are commercially available, and offer substantial pollutant removal efficiencies. None of them would pose unreasonable operational difficulties.

However, all of the add-on technologies failed the cost-effectiveness criteria, for the individual pollutants and for the multi-pollutant reasonableness test. The cost-effectiveness values for each technology are listed in Table 1.

Table 1. Comparison of Cost-Effectiveness Evaluations

	Cost-Effectiveness (\$/ton)					
Control Device	NOX	Total PM	со	VOC	Combined Pollutants	
MTU AirClarity						
System (Catalyzed						
DPF + SCR) proposed						
by Vantage	\$81,000	\$700,000	\$434,000	\$1,645,000	\$60,000	
Catalyzed DPF Alone	Ineffective	\$252,000	\$152,000	\$578,000	\$81,000	
SCR Alone	\$40,300	\$1,519,000	\$216,000	\$820,000	\$32,000	
3-Way Catalyst	\$37,500	\$125,000	\$71,000	\$296,000	\$19,200	
Diesel Oxidation						
Catalyst	Ineffective	\$310,000	\$55,000	\$314,000	\$41,000	
Ecology Cost-						
Effectiveness						
Criterion	\$10,000	\$23,200	\$5,000	\$10,000	N/A	

Because all of the add-on technologies failed the cost-effectiveness criterion, ICF recommends that none of them should be defined as BACT. Instead, ICF recommends that BACT for each pollutant should be defined as use of EPA Tier-2 certified engines, with diligent annual operation and maintenance requirements required under New Source Performance Standards Subpart IIII.

Methodology

Emission Estimation Methods (Nominal-Controlled Emission Rates)

The AERMOD modeling used for NAAQS compliance and risk assessments for Vantage's permit application used the vendor-guaranteed, "not-to-exceed" (NTE) load-specific controlled emission rates as the starting point for the emission calculations. Vantage's equipment contractor is ELM Energy, LLC. ELM's vendor guaranteed NTE controlled emission rates apply to each individual engine at each load.

However, for this BACT assessment Ecology directed ICF to use emission rates that are fundamentally different from ELM's vendor-guaranteed controlled rates used for Vantage's AERMOD modeling. For this BACT assessment Ecology directed ICF to forecast the uncontrolled emissions by using ELM's "nominal uncontrolled" rates. These estimated uncontrolled rates, which were provided by ELM, represent ELM's judgment of the likely overall average emission rates for the overall population of generators manufactured by MTU. They do not apply to any individual generator, and they are called "nominal" because they are not guaranteed by ELM or MTU. ELM's "nominal-uncontrolled" emission rates are listed in Table 1. Note, the listed values for particulate matter include ICF's adjustment factors to account for the total particulate including both the "front half" and the "back half" (FH+BH).

Table 1. ELM Energy Nominal Uncontrolled Emission Rates (lbs/hr)

Load	NOX	Total PM (FH+BH)	со	voc
10%	6.0	1.45	2.8	1.2
81.3%	37.2	2.55	5.3	1.1
90%	43.6	2.92	6.0	1.1
93.3%	46.1	3.04	6.3	1.1
100%	51.5	3.24	6.8	1.1

The load-specific "nominal-uncontrolled" rates were adjusted upward by applying the cold-start factors that were also used for Vantage's permit application package. The overall cold-start adjusted uncontrolled emission rates, expressed as pounds per hour at each generator load, are presented in Attachment A.

To forecast the hourly controlled emission rates at each generator load, Ecology directed ICF to calculate the "nominal-controlled" rates by multiplying the "nominal uncontrolled" rate times the removal efficiency provided by the control device being considered. The vendor-supplied removal efficiencies for each of the control devices considered are listed in Table 2.

Table 2. Vendor-Provided Steady-State Pollutant Removal Efficiencies for Commercially Available Control Devices

Pollutant	MTU AirClarity System	Clean Air	Clean Air	Clean	MiraTech
	Proposed by Vantage	Systems	Systems Urea	Emission	Diesel
	(Catalyzed DPF + Urea SCR)	Catalyzed	SCR NOX	Products	Oxidation
		DPF	System Incl.	3-Way	Catalyst
			DOC	Catalyst	
NOx	90%	0%	90%	35%	0%
PM (FH+BH)	87%	85%	20%	88%	25%
СО	90%	90%	90%	99%	90%
VOC	90%	90%	90%	90%	60%

Most of the control devices considered for this BACT assessment use a metal catalyst to destroy the pollutants. After a cold start, these catalysts temporarily remain inactive until the hot flue gas heats the catalyst up to its minimum operating temperature. To account for this temporary cold-start delay, an additional cold-start catalyst delay factor was applied to each control device. The cold-start catalyst delay factors for each control device are calculated in Attachments B-F.

After the load-specific, cold-start "nominal-controlled" emission rates were calculated for each control device, the facility-wide "nominal-uncontrolled" and "nominal-controlled" emission rates were calculated by applying the hourly emission rates to the runtime hours presented in Vantage's permit application. The runtime hours considered for the BACT assessment included scheduled testing, corrective maintenance, storm avoidance, and unplanned power outages. The annual-average runtime hours for initial commissioning tests and for periodic stack emission testing were not included in the BACT assessment. The facility-wide "nominal-uncontrolled" emission rates are calculated in Attachment A. The facility-wide "nominal-controlled" emission rates for each control device are calculated in Attachments B-F.

Cost Estimating Methods

Cost spreadsheets for each category of control device considered for this BACT assessment are provided in Attachments B-F. The methods used to calculate the total capital investment (TCI) for each type of control device were as follows:

- For each control device other than DOCs, the purchase price listed as "Freight on Board (FOB" at the manufacturer's facility was provided. For DOCs, the Department of Information Services (DIS) provided a tally of the total installed cost at their Olympia data center.
- In some cases ICF used FOB purchase price information for control devices designed for either 2,000 kWe or 2,500 kWe generators at other data centers, rather than the 3,000 kWe generators at the Vantage Data Center. In those cases, ICF adjusted the FOB purchase price upward using the "0.6 rule".
- Cost factors for indirect installation costs (shipping, installation, design fees, etc.) were derived from EPA's guidance manual <u>EPA Pollution Control Cost Manual</u>, January 2002. The cost factors from Section 4.2 Chapter 1, Selective Catalytic Reduction, were used.
- Annual capital recovery cost was based on an assumed 25-year equipment life, with a conservatively low discount rate of 4%.
- Indirect annual costs (overhead, insurance, and taxes) were calculated by cost factors from EPA's control cost guidance manual listed above.

- For this screening-level analysis it was assumed that none of the control devices would incur annual costs for operation and maintenance. This results in a conservatively low estimate of the control device capital cost, annual cost, and cost-effectiveness.
- The Total Annual Cost for each control device was calculated by summing the estimate annual costs for capital recovery, direct operation and maintenance, and indirect annual costs.

Cost-Effectiveness Criteria for Individual Pollutants

For the individual pollutants, the individual pollutant cost-effectiveness was calculated by dividing the total annual cost (\$/year) by the tons of facility-wide pollutant removed by the control device. The derived cost-effectiveness was then compared to the following cost-effectiveness criteria values, which were developed by Ecology for the Sabey-Intergate-Quincy data center's air quality permit:

NOX: \$10,000/ton

Total PM (FH+BH): \$23,200/ton

CO: \$5,000/ton

VOC: no value listed. Assumed to be \$10,000/ton (same as NOx)

Reasonableness Cost Effectiveness for Multi-Pollutant Analyses

All of the control devices considered for this BACT assessment are at least marginally effective at controlling the entire range of pollutants. The manufacturer-provided removal efficiencies range from a low of 25% for PM removed by DOCs, to as high as 99.9% for CO removed by 3-Way Catalysts.

To account for the variable reduction efficiencies for the various pollutants, for each control device the multi-pollutant cost effectiveness was evaluated by comparing two facility-wide cost parameters: the actual total annual cost to own and operate the control device being considered; and the "reasonable annual control cost for combined pollutants". The evaluation is done using a three-step process:

- The "reasonable annual cost" for each individual pollutant is calculated by multiplying the annual tons/year of that pollutant removed by the control device times the Ecology cost-effectiveness criterion for that pollutant.
- The facility-wide "total reasonable annual cost" is calculated by summing the calculated values for each individual pollutant.
- The "total reasonable annual cost" is then compared to the actual total annual cost. If the actual annual cost is less than the "total reasonable annual cost" then the cost for multi-pollutant treatment is considered "reasonable" and the control device satisfies the BACT cost-effectiveness criterion. However, if the actual annual cost exceeds the "total reasonable annual cost" then the cost for multi-pollutant treatment is considered "non-reasonable" and the control device fails the BACT cost-effectiveness criterion.

Identification of Technically Feasible Control Technologies

Since 2007 Ecology and other Washington state agencies have issued air quality permits for the following data centers that use large diesel emergency generators: Sabey-Intergate-Quincy; Dell-Quincy; Yahoo-Quincy; Microsoft-Quincy; Intuit-Quincy; Titan-Moses Lake; Dept. of Information Services (DIS) Data Center –Olympia; Sabey-Intergate-Wenatchee; and T-Mobile-Wenatchee. ICF reviewed Ecology's BACT determinations for these existing data centers, and developed the following list of technically feasible emission controls applicable for diesel generators:

- EPA Tier-2 certified engines with combustion controls including timing retard, exhaust gas cooling, exhaust gas recirculation, and turbocharging. This technology is considered the base case for the BACT assessment.
- Vantage's proposed AirClarity system (catalyzed Diesel Particulate Filter plus Urea-based Selective Catalytic Reduction). Technical information, emission estimates, cost data, and costeffectiveness calculations are provided in Attachment B.
- Catalyzed Diesel Particulate Filter by itself (technical information in Attachment C).
- Urea-Selective Catalytic Reduction by itself (technical information in Attachment D).
- Three-Way Catalyst (also known as Two-Stage Catalyst). Technical information is provided in Attachment E.
- Diesel Oxidation Catalyst (see Attachment F).

BACT Analysis for NOx

Vantage's Proposed AirClarity System (Urea-Based SCR Plus Catalyzed DPF)

ELM energy has contracted with Vantage to install MTU's AirClarity emission control system on each generator. Technical information is provided in Attachment B. The AirClarity system consists of a modular system including a catalyzed DPF and a urea-based SCR.

The SCR system evaluated for this analysis is the Clean Air Systems package. Technical information is provided in Attachment C. The SCR system functions by injecting a liquid reducing agent, such as urea, through a catalyst into the exhaust stream of the diesel engine. The urea reacts with the exhaust stream converting nitrogen oxides into nitrogen and water. The use of a lean ultralow sulfur fuel is required to achieve good NOx destruction efficiencies. SCR can reduce NOx emissions by up to 90-95 percent while simultaneously reducing hydrocarbon (VOC), CO and PM emissions.

For SCR systems to function effectively, exhaust temperatures must be high enough (about 200 to 500 degrees C) to enable catalyst activation. For this reason, SCR control efficiencies are expected to be

relatively low during the first 10 to 20 minutes after engine start up, especially during maintenance, and testing loads. There are also complications of managing and controlling the excess ammonia (ammonia slip) from SCR use. However, Vantage accounted for ammonia slip in its permit application and demonstrated the small amount of ammonia emissions would not cause ambient concentrations beyond the facility boundary to exceed the ASIL for ammonia. Because backup engines typically experience long inactive periods between operations, the facility must conduct diligent inspection and maintenance of the urea storage and injection system to ensure that urea crystallization inside reagent distribution lines does not interfere with the SCR system.

ELM has provided vendor-guaranteed removal efficiencies for the AirClarity system as follows: NOx = 90%; CO and VOC = 90%; and total PM (front-half plus back-half) = 87%. The AirClarity system provides substantial removal efficiencies for all key pollutants. The system is reliable, and would pose not substantial operating constraints. Therefore, the AirClarity system is considered a technically feasible add-on technology.

However, Vantage's proposed AirClarity system failed the cost-effectiveness evaluation. ICF evaluated the cost effectiveness of installing and operating AirClarity systems on the proposed Vantage diesel engines. Emission calculations and cost-effectiveness calculations for an AirClarity system installed on the Vantage generators are provided in Attachment B. The individual-pollutant cost-effectiveness for NOx, PM, CO and VOC is presented in Table AC-1 below. The analysis indicates that the use of the AirClarity systems would cost approximately \$700,000 per ton of PM removed from the exhaust stream based on Vantage's permitted annual runtime scenario including power outage of eight (8) hours per year. A previous survey by Ecology found that the permitting agencies surveyed have required installation of NOx controls as BACT with expected operational costs ranging from \$143 to \$9,473 per ton of NOx removed, and Ecology has set the NOx cost-effectiveness criterion at \$10,000 per ton. Therefore, the AirClarity system fails the cost-effectiveness test on an individual pollutant basis.

Table AC-1. AirClarity System, Individual Pollutants Removal Tonnages (Nominal-Controlled)

Pollutant	PM	CO	VOC	NOX
	(FH+BH)			
Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1
Nominal Cold-Start Controlled TPY	0.203	0.958	0.293	4.38
Tons Removed/Year	1.36	2.19	0.578	11.8
Overall Cold-Start Removal Effcy	87%	70%	66%	73%
Annualized Cost (\$/yr)	\$950,466	\$950,466	\$950,466	\$950,466
Individual Pollutant \$/Ton Removed	\$700,039	\$433,611	\$1,644,950	\$80,819
Ecology Cost-Effectiveness Threshold	\$23,200	\$5,000	\$10,000	\$10,000
Pass or Fail?	Fail	Fail	Fail	Fail

The AirClarity system would also provide substantial removal efficiencies for PM, CO and VOC, as well as for NOx. However, the AirClarity system failed the multi-pollutant cost effectiveness evaluation. Table AC-2 below shows the multi-pollutant evaluation. The actual annual cost to own and operate the AirClarity system would be \$950,000 per year, which far exceeds the "Total"

Reasonable Annual Cost" of \$166,000 per year based on Ecology's cost criteria for the individual pollutants.

Table AC-2. AirClarity System: Multi-Pollutant Cost-Effectiveness for Reasonable Control Cost vs. Actual Control Cost

Pollutant	Ecology Acceptable Unit Cost (\$/ton)	Forecast Removal (tons/yr)	Subtotal Reasonable Annual Cost (\$/year)	
NOX	\$10,000	11.76	\$117,604	per year
CO	\$5,000	2.19	\$10,960	per year
VOC	\$9,999	0.58	\$5,778	per year
PM (FH+BH)	\$23,200	1.36	\$31,499	per year
Total Reason	Total Reasonable Annual Control Cost for Combined Pollutants			per year
Actual Annual Control Cost		\$950,466	per year	
Is The Control Device Reasonable?		NO (Actual	>> Reasonable)	

ICF concludes that while Vantage's proposed AirClarity system is a potentially-feasible emission control technology for diesel engines, it is not economically feasible under BACT. Therefore, ICF recommends that Ecology should reject this control option as BACT.

Selective Catalytic Reduction (SCR) By Itself (See Attachment D for details)

The SCR system evaluated for this analysis is the Clean Air Systems package that was originally evaluated by Sabey for the BACT analysis for their Intergate-Quincy data center. Technical information is provided in Attachment D. The Clean Air Systems package includes a urea-based SCR and a diesel oxidation catalyst, to provide substantial removal efficiencies for NOx, CO and VOC. The Clean Air Systems package does not include a DPF, so it provides only marginal removal efficiency for PM (20% estimated efficiency).

The SCR system functions by injecting a liquid reducing agent, such as urea, through a catalyst into the exhaust stream of the diesel engine. The urea reacts with the exhaust stream converting nitrogen oxides into nitrogen and water. The use of a lean ultralow sulfur fuel is required to achieve good NOx destruction efficiencies. SCR can reduce NOx emissions by up to 90-95 percent while simultaneously reducing hydrocarbon (VOC), CO and PM emissions.

For SCR systems to function effectively, exhaust temperatures must be high enough (about 200 to 500 degrees C) to enable catalyst activation. For this reason, SCR control efficiencies are expected to be relatively low during the first 10 to 20 minutes after engine start up, especially during maintenance, and testing loads. There are also complications of managing and controlling the excess ammonia (ammonia slip) from SCR use. However, Vantage accounted for ammonia slip in its permit application and demonstrated the small amount of ammonia emissions would not cause ambient concentrations beyond the facility boundary to exceed the ASIL for ammonia. Because backup engines typically experience

long inactive periods between operations, the facility must conduct diligent inspection and maintenance of the urea storage and injection system to ensure that urea crystallization inside reagent distribution lines does not interfere with the SCR system.

Based on these considerations, ICF concludes SCR is a technically feasible add-on technology for NOx, PM, VOC and CO control.

However, SCR failed the cost-effectiveness evaluation. ICF evaluated the cost effectiveness of installing and operating SCR systems on the proposed diesel engines. Emission calculations and cost-effectiveness calculations for an SCR system installed on the Vantage generators are provided in Attachment D. The individual-pollutant cost-effectiveness for NOx, PM, CO and VOC is presented in Table SCR-1 below. The analysis indicates that the use of SCR systems would cost approximately \$40,300 per ton of NOx removed from the exhaust stream based on Vantage's worst-case annual runtime scenario including power outage of eight (8) hours per year. A previous survey by Ecology found that the permitting agencies surveyed have required installation of NOx controls as BACT with expected operational costs ranging from \$143 to \$9,473 per ton of NOx removed, and Ecology has set the NOx cost-effectiveness criterion at \$10,000 per ton.

Table SCR-1. Urea-SCR, Individual Pollutant Removal Tonnages (Nominal-Controlled)

Table bok-1: orea-bott, individual i bilatalit Keliloval Tollilages (Nollillial-bottlolled)						
Pollutant	PM (FH+BH)	CO	VOC	NOX		
Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1		
Nominal Cold-Start Controlled TPY	1.248	0.958	0.293	4.38		
Tons Removed/Year	0.31	2.19	0.578	11.8		
Overall Cold-Start Removal Effcy	20%	70%	66%	73%		
Annual Cost (\$/yr)	\$473,994	\$473,994	\$473,994	\$473,994		
Individual Pollutant \$/Ton Removed	\$1,518,616	\$216,240	\$820,331	\$40,304		
Ecology Cost-Effectiveness Threshold	\$23,200	\$5,000	\$10,000	\$10,000		
Pass or Fail?	Fail	Fail	Fail	Fail		

A typical SCR system would also provide substantial removal efficiencies for PM, CO and VOC, as well as for NOx. However, the SCR failed the multi-pollutant cost effectiveness evaluation. Table SCR-2 below shows the multi-pollutant evaluation. The actual annual cost to own and operate the SCR would be \$473,000 per year, which far exceeds the "Total Reasonable Annual Cost" of \$142,000 per year based on Ecology's cost criteria for the individual pollutants.

Table SCR-2. Urea-SCR Multi-Pollutant Cost-Effectiveness for "Reasonable Control Cost" vs. Actual Control Cost

Pollutant	Ecology Acceptable Unit Cost (\$/ton)	Forecast Removal (tons/yr)		asonable Annual : (\$/year)
NOX	\$10,000	11.76	\$117,604	per year
CO	\$5,000	2.19	\$10,960	per year
VOC	\$9,999	0.58	\$5,778	per year
PM (FH+BH)	\$23,200	0.31	\$7,241	per year
Total Reasonable Annual Control Cost for Combined Pollutants			\$141,583	per year
Actual Annual Control Cost		\$473,994	per year	
Is The Control Device Reasonable?			NO (Actual	>> Reasonable)

ICF concludes that while SCR is a demonstrated emission control technology for emergency diesel generators, it is not economically feasible for this project. Therefore, ICF recommends that Ecology should reject this NOx control option as BACT.

3-Way Catalyst (Two-Stage Catalyst)

For this BACT assessment, ICF considered the Clean Emission Products 3-Way Catalyst system that was permitted for the Titan Data Center in Moses Lake, WA. Technical specifications, removal efficiency data, emission calculations, and cost-effectiveness calculations are provided in Attachment F.

Based on the experience at the Titan Data Center, ICF concludes it is possible that 2-stage oxidation catalysts ("3-way" catalysts) might be able to be designed to provide some marginal NOx emission reductions from modern emergency generators. The Clean Emission Products system proposed by R S Titan Lotus, LLC and approved by Ecology is specially designed to remove up to 35% of NOx emissions, as well as considerable quantities of diesel particulate, CO and VOC emissions. The system reviewed by Ecology is a single-pass system that can be installed without retrofitting closed-loop systems such as Exhaust Gas Recirculation. Each catalyst system uses a stainless steel honeycomb mesh catalyst element coated with three catalysts: cerium washcoat; platinum (Pt) and rhodium (Rh) catalyst coatings.

The 2-stage oxidation catalysts first oxidize CO and VOC while removing oxygen from the gas stream, then the remaining rich-burn environment reacts with the Rh catalyst to chemically convert the NO and NO2 in the exhaust stream to nitrogen. The system achieves the required low-oxygen environment by using a specialized catalyst coating and cell structure to remove oxygen molecules from the diesel exhaust stream. Exhaust temperature must be at least 250°C and not exceed 750°C for the system to be effective.

Although 2-stage oxidation catalyst systems appear to have been commercially deployed for standby diesel engine applications in Europe, Australia and Canada, Ecology is unaware of specific applications within the United Sates. The Titan Data Center (Moses Lake, Washington) has proposed to use two 35" diameter x 3.5" thick 3-way catalysts within one stainless steel housing for their planned expansion. The manufacturer of that catalyst system (Clean Emissions Products, Inc.) guaranteed a NOx reduction of not less than 35% although their website and a company salesman both claim that their 2-stage catalysts are capable of reducing up to 99% of CO, 70% of NOx and 90% of diesel particulate. The catalysts proposed by the Titan Data Center are also expected to reduce at least 90% of VOC. Clean Emission Products' limited test data have reported about 43% NOx reduction and about 88% diesel particulate reduction. However, Clean Emission Products have been unable to provide any test data for a lean-burn Tier-2 diesel engine such as those proposed at Vantage. As of this writing, the diesel generators at the Titan Data Center have not been installed, so no compliance test data are available for that facility.

Regardless, based on Clean Emission Products' vendor-guaranteed contract with Titan Data Center, ICF concludes 3-Way Catalysts appear to be a technically-feasible add-on technology to provide marginal NOx reduction on diesel generators.

However, 3-Way Catalysts failed the cost-effectiveness evaluation. ICF evaluated the cost effectiveness of installing and operating 3-Way Catalyst systems on the proposed Vantage diesel engines. Emission calculations and cost-effectiveness calculations for an SCR system installed on the Vantage generators are provided in Attachment E. The individual-pollutant cost-effectiveness for NOx, PM, CO and VOC is presented in Table 3WC-1 below. The analysis indicates that the use of 3-Way Catalyst systems would cost approximately \$37,457 per ton of NOx removed from the exhaust stream based on Vantage's worst-case annual runtime scenario including power outage of eight (8) hours per year. A previous survey by Ecology found that the permitting agencies surveyed have required installation of NOx controls as BACT with expected operational costs ranging from \$143 to \$9,473 per ton of NOx removed, and Ecology has set the NOx cost-effectiveness criterion at \$10,000 per ton. Therefore, the 3-Way Catalyst fails the cost-effectiveness test on an individual pollutant basis.

Table 3WC-1. Three-Way Catalyst Individual Pollutant Removal Tonnages (Nominal-Controlled)

Pollutant	PM (FH+BH)	CO	VOC	NOX
Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1
Nominal Cold-Start Controlled TPY	0.187	0.739	0.293	11.57
Tons Removed/Year	1.37	2.41	0.578	4.6
Overall Cold-Start Removal Effcy	88%	77%	66%	28%
Annual Cost (\$/year)	\$171,311	\$171,311	\$171,311	\$171,311
Individual Pollutant \$/Ton Removed	\$124,740	\$71,049	\$296,484	\$37,457
Ecology Cost-Effectiveness Threshold	\$23,200	\$5,000	\$10,000	\$10,000
Pass or Fail?	Fail	Fail	Fail	Fail

A typical 3-Way Catalyst system would also provide substantial removal efficiencies for PM, CO and VOC, as well as for NOx. However, the 3-Way Catalyst failed the multi-pollutant cost effectiveness evaluation. Table 3WC-2 below shows the multi-pollutant evaluation. The actual annual cost to own

and operate the 3-Way Catalyst would be \$171,000 per year, which exceeds the "Total Reasonable Annual Cost" of \$95,000 per year based on Ecology's cost criteria for the individual pollutants.

Table 3WC-2. Three-Way Catalyst, Multi-Pollutant Cost-Effectiveness for "Reasonable Control Cost" vs. Actual Control Cost

Pollutant	Ecology Acceptable Unit Cost (\$/ton)	Forecast Removal (tons/yr)		asonable Annual t (\$/year)
NOX	\$10,000	4.57	\$45,735	per year
CO	\$5,000	2.41	\$12,056	per year
VOC	\$9,999	0.58	\$5,778	per year
PM (FH+BH)	\$23,200	1.37	\$31,861	per year
Total Reasonable Annual Control Cost for Combined Pollutants			\$95,430	per year
Actual Annual Control Cost		\$171,311	per year	
Is The Control Device Reasonable?			NO (Actual	>> Reasonable)

ICF concludes that while 3-Way Catalysts are a potentially-feasible emission control technology for diesel engines, it is not economically feasible for this project. Therefore, ICF recommends that Ecology should reject this NOx control option as BACT.

NOx Adsorbers (Experimental Technology)

The use of NOx adsorbers (sometimes called lean NOx traps) is a catalytic method being developed and tested by diesel engine manufacturers to reduce NOx emissions, primarily from mobile sources. The NOx adsorber contains a catalyst (e.g., zeolite or platinum) that is used to "trap" NOx (NO and NO2) molecules found in the exhaust. NOx adsorbers can achieve NOx reductions greater than 90% at typical steady-state exhaust gas temperatures.

However, as of this writing, NOx adsorbers are experimental technology and are, therefore, very expensive. Additionally, a literature search did not reveal any indication that this technology is commercially available for stationary backup generators. Thus, ICF recommends that Ecology should reject NOx adsorbers as BACT for the proposed diesel engines.

Combustion Controls and Tier-2 Compliance

Diesel engine manufacturers typically use proprietary combustion control methods to achieve the emission reductions needed to meet applicable EPA Tier-2 standards. Common controls include fuel injection timing retard and exhaust gas recirculation. Injection timing retard reduces the peak flame temperature and NOx emissions, but may lead to higher fuel consumption.

Vantage will install generators equipped with MTU engines that will use a combination of combustion control methods, including fuel injection timing retard, to comply with EPA Tier-2 emission limits.

This is the only technology that provides substantial emission reductions while also satisfying cost-effectiveness criteria. ICF recommends that Ecology should require this technology as BACT for NOx.

BACT Analysis for Combined Particulate Matter, Carbon Monoxide, and Volatile Organic Compounds

Vantage's Proposed AirClarity System (Catalyzed DPF Plus SCR)

The MTU AirClarity emission control system proposed by Vantage consists of a modular system including a catalyzed DPF and a urea-based SCR. ELM energy has provided vendor guaranteed removal efficiencies of 87% for total PM (front-half plus back-half), and 90% for NOx, CO and VOC. Technical specifications, emission estimates, and cost-effectiveness calculations are provided in Attachment B. The AirClarity system provides substantial removal efficiencies for all key pollutants. The system is reliable, and would pose not substantial operating constraints. Therefore, the AirClarity system is considered a technically feasible add-on technology.

However, Vantage's proposed AirClarity system failed the cost-effectiveness evaluation. ICF evaluated the cost effectiveness of installing and operating AirClarity systems on the proposed Vantage diesel engines. Emission calculations and cost-effectiveness calculations for an AirClarity system installed on the Vantage generators are provided in Attachment B. The individual-pollutant cost-effectiveness for NOx, PM, CO and VOC is presented in Table AC-1 below. The analysis indicates that the use of the AirClarity systems would cost approximately \$700,000 per ton of PM removed from the exhaust stream based on Vantage's worst-case annual runtime scenario including power outage of eight (8) hours per year.

For PM, a previous survey by Ecology found that none of the permitting agencies surveyed had required installation of a particulate matter control device (as BACT) that was expected to cost more than \$23,200 per ton of particulate removed. Therefore, Ecology has specified the PM cost-effectiveness criterion of \$23,200 per ton.

For CO, a previous survey by Ecology found that the permitting agencies surveyed have required installation of carbon monoxide controls as BACT on other types of emission units, with expected operational costs ranging from \$300 to \$9,795 per ton of carbon monoxide removed. The upper level of that range is suspect and it is possible that that number actually reflects California BACT which is typically equivalent to a Lowest Achievable Emissions Rate (LAER) limit. In Washington, costs for controlling CO from combined cycle natural gas electric generating facilities are usually in the \$3,500 to \$5,000 range. Therefore, Ecology has specified a BACT cost-effectiveness criterion of \$5,00 per ton removed for CO.

A previous survey by Ecology found that the permitting agencies surveyed have required installation of NOx controls as BACT with expected operational costs ranging from \$143 to \$9,473 per ton of NOx removed, and Ecology has set the NOx cost-effectiveness criterion at \$10,000 per ton.

Ecology has not set a BACT cost-effectiveness criterion for VOC. For this BACT assessment, ICF assumed the VOC cost-effectiveness threshold is the same as for NOx, because both pollutants are ozone precursors. Therefore, the VOC criterion was assumed to be \$10,000 per ton.

As listed in Table AC-1 below, the calculated cost-effectiveness values for each individual pollutant controlled by the AirClarity system far exceed their respective Ecology criteria. Therefore, the AirClarity system fails the cost-effectiveness test on an individual pollutant basis.

Table AC-1. AirClarity System, Individual Pollutants Removal Tonnages (Nominal-Controlled)

Pollutant	PM	СО	VOC	NOX
	(FH+BH)			
Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1
Nominal Cold-Start Controlled TPY	0.203	0.958	0.293	4.38
Tons Removed/Year	1.36	2.19	0.578	11.8
Overall Cold-Start Removal Effcy	87%	70%	66%	73%
Annualized Cost (\$/yr)	\$950,466	\$950,466	\$950,466	\$950,466
Individual Pollutant \$/Ton Removed	\$700,039	\$433,611	\$1,644,950	\$80,819
Ecology Cost-Effectiveness Threshold	\$23,200	\$5,000	\$10,000	\$10,000
Pass or Fail?	Fail	Fail	Fail	Fail

The AirClarity system would also provide substantial removal efficiencies for PM, CO and VOC, as well as for NOx. However, the AirClarity system failed the multi-pollutant cost effectiveness evaluation. Table AC-2 below shows the multi-pollutant evaluation. The actual annual cost to own and operate the AirClarity system would be \$950,000 per year, which far exceeds the "Total Reasonable Annual Cost" of \$166,000 per year based on Ecology's cost criteria for the individual pollutants.

Table AC-2. AirClarity System: Multi-Pollutant Cost-Effectiveness for Reasonable Control Cost vs. Actual Control Cost

Pollutant	Ecology Acceptable Unit Cost (\$/ton)	Forecast Removal (tons/yr)	Subtotal Reasonable Annual Cost (\$/year)		
NOX	\$10,000	11.76	\$117,604	per year	
CO	\$5,000	2.19	\$10,960	per year	
VOC	\$9,999	0.58	\$5,778	per year	
PM (FH+BH)	\$23,200	1.36	\$31,499	per year	
Total Reasonable Annual Control Cost for Combined Pollutants			\$165,841	per year	
Actual Annual Control Cost		\$950,466	per year		
Is The Control Device Reasonable?		NO (Actual	>> Reasonable)		

ICF concludes that while Vantage's proposed AirClarity system is a potentially-feasible emission control technology for diesel engines, it is not economically feasible under BACT. Therefore, ICF recommends that Ecology should reject this control option as BACT.

Catalyzed Diesel Particulate Filters (DPFs)

For this BACT assessment, ICF evaluated the Clean Air Systems catalyzed DPFs that were originally considered for the Sabey-Intergate-Quincy data center. Technical specifications, emission estimates, and cost-effectiveness calculations are provided in Attachment C.

The Clean Air Systems catalyzed DPF package includes their PERMIT DPF plus their ASSURE diesel oxidation catalyst. Clean Air Systems estimated 85% removal efficiency for PM, and 90% removal efficiency for CO and VOC. The DPF-DOC system would not remove any NOx.

The catalyzed DPF system would be reliable, and would pose no substantial operating constraints for the generators. There is one identified problem with the catalyzed DPF system. Field tests on a DOC conducted by Microsoft on one of their diesel generators showed that DOCs can convert some of the non-toxic nitric oxide (NO) in the exhaust stream to highly-toxic nitrogen dioxide (NO2). At this time it is uncertain whether the increased emissions of toxic NO2 might pose human health concerns at receptors beyond the facility.

Regardless of that potential issue, ICF concludes that catalyzed DPFs would be a reliable and efficient system to reduce the emissions of PM, CO and VOC. Therefore, ICF concludes that catalyzed DPFs, by themselves, would be a technically feasible add-on control technology.

However, catalyzed DPFs failed the cost-effectiveness evaluation. ICF evaluated the cost effectiveness of installing and operating 3-Way Catalyst systems on the proposed Vantage diesel engines. Emission calculations and cost-effectiveness calculations for a catalyzed DPF system installed on the Vantage generators are provided in Attachment C. The individual-pollutant cost-effectiveness for NOx, PM, CO and VOC is presented in Table DPF-1 below. The analysis indicates that the use of a catalyzed DPF systems would cost approximately \$252,000 per ton of PM removed from the exhaust stream based on Vantage's worst-case annual runtime scenario including power outage of eight (8) hours per year.

As described previously, Ecology has set BACT cost-effectiveness thresholds for the individual pollutants at the values listed below in Table DPF-1. For each individual pollutant the forecast actual cost far exceeds Ecology's BACT cost-effectiveness criterion. Therefore, the catalyzed DPFs fails the cost-effectiveness test on an individual pollutant basis.

Table DPF-1. Catalyzed DPF, Individual Pollutant Removal Tonnages (Nominal-Controlled)

Pollutant	PM (FH+BH)	СО	VOC	NOX
Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1
Nominal Cold-Start Controlled TPY	0.234	0.958	0.293	16.14
Tons Removed/Year	1.33	2.19	0.578	0.0
Overall Cold-Start Removal Effcy	85%	70%	66%	0%
Annual Cost (\$/year)	\$333,734	\$333,734	\$333,734	\$333,734
Individual Pollutant \$/Ton Removed	\$251,586	\$152,252	\$577,585	N/A
Ecology Cost-Effectiveness Threshold	\$23,200	\$5,000	\$10,000	\$10,000
Pass or Fail?	Fail	Fail	Fail	Fail

A typical catalyzed DPF system would also provide substantial removal efficiencies for CO and VOC, as well as for PM. However, the DPF failed the multi-pollutant cost effectiveness evaluation. Table DPF-2 below shows the multi-pollutant evaluation. The actual annual cost to own and operate the DPF would be \$333,000 per year, which far exceeds the "Total Reasonable Annual Cost" of \$47,000 per year based on Ecology's cost criteria for the individual pollutants.

Table DPF-2. Catalyzed DPF, Multi-Pollutant Cost-Effectiveness for "Reasonable Control Cost" vs. Actual Control Cost

Pollutant	Ecology Acceptable Unit Cost (\$/ton)	Forecast Removal (tons/yr)	Subtotal Reasonable Annual Cost (\$/year)				
NOX	\$10,000	0.00	\$0	per year			
CO	\$5,000	2.19	\$10,960	per year			
VOC	\$9,999	0.58	\$5,778	per year			
PM (FH+BH)	\$23,200	1.33	\$30,775	per year			
Total Reason	able Annual Control C	ost for Combined					
	Pollutants		\$47,513	per year			
A	Actual Annual Control	Cost	\$333,734	per year			
ls Th	e Control Device Reas	sonable?	NO (Actual	>> Reasonable)			

ICF concludes that while DPFs are a potentially-feasible emission control technology for diesel engines, it is not economically feasible under BACT. Therefore, ICF recommends that Ecology should reject this control option as BACT.

Diesel Oxidation Catalysts (see Attachment F)

For this BACT assessment ICF considered installing DOCs by themselves. That control strategy was required for the Department of Information Services (DIS) Data Center in Olympia, WA. For this assessment ICF considered the MiraTech DOC system that was installed at the DIS Data Center. Technical specifications, emission estimates, installation cost information, and cost-effectiveness

calculations are provided in Attachment F.

This method utilizes metal catalysts to oxidize carbon monoxide, particulate matter, and hydrocarbons in the diesel exhaust. Diesel oxidation catalysts (DOCs) are commercially available and reliable for controlling particulate matter, carbon monoxide and hydrocarbon emissions from diesel engines. While the primary pollutant controlled by DOCs is carbon monoxide (approximately 90% reduction), DOCs have also been demonstrated to reduce up to 25% of diesel engine exhaust particulate emissions, and up to 60% of hydrocarbon emissions.

The DOC system would be reliable. It would provide high removal efficiencies for CO and VOC, while also providing a small amount of PM removal. In general it would pose no substantial operating constraints for the generators. There is one identified problem with the catalyzed DPF system. Field tests on a DOC conducted by Microsoft on one of their diesel generators showed that DOCs can convert some of the non-toxic nitric oxide (NO) in the exhaust stream to highly-toxic nitrogen dioxide (NO2). At this time it is uncertain whether the increased emissions of toxic NO2 might pose human health concerns at receptors beyond the facility.

Regardless of that potential issue, ICF concludes that DOCs would be a reliable and efficient system to reduce the emissions of PM, CO and VOC. Therefore, ICF concludes that catalyzed DPFs, by themselves, would be a technically feasible add-on control technology.

However, DOCs failed the cost-effectiveness evaluation on an individual-pollutant basis and on a multi-pollutant basis. ICF evaluated the cost effectiveness of installing and operating DOC systems on the proposed Vantage diesel engines. Emission calculations and cost-effectiveness calculations for the DOC system installed on the Vantage generators are provided in Attachment F. The individual-pollutant cost-effectiveness for NOx, PM, CO and VOC is presented in Table DOC-1 below. For each pollutant the forecast actual control cost far exceeds Ecology's cost-effectiveness criterion. Therefore, the DOC fails the cost-effectiveness test on an individual pollutant basis.

Table DOC-1. DOC Individual Pollutant Removal Tonnages (Nominal-Controlled)

Pollutant	PM (FH+BH)	CO	VOC	NOX
Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1
Nominal Cold-Start Controlled TPY	1.170	0.958	0.485	16.14
Tons Removed/Year	0.39	2.19	0.385	0.0
Overall Cold-Start Removal Effcy	25%	70%	44%	0%
Total Annual Cost (\$/year)	\$120,766	\$120,766	\$120,766	\$120,766
Individual Pollutant \$/Ton Removed	\$309,535	\$55,094	\$313,511	N/A
Ecology Cost-Effectiveness Threshold	\$23,200	\$5,000	\$10,000	\$10,000
Pass or Fail?	Fail	Fail	Fail	Fail

A typical DOC system would also provide some marginal efficiencies for PM, as wells as substantial removal for CO and VOC. However, the DOC failed the multi-pollutant cost effectiveness evaluation. Table DOC-2 below shows the multi-pollutant evaluation. The actual annual cost to own and operate

the DOC would be \$121,000 per year, which far exceeds the "Total Reasonable Annual Cost" of \$24,000 per year based on Ecology's cost criteria for the individual pollutants.

Table DOC-2. DOC, Multi-Pollutant Cost-Effectiveness for "Reasonable Control Cost" vs. Actual Control Cost

Pollutant	Ecology Acceptable Unit Cost (\$/ton)	Forecast Removal (tons/yr)		ceptable Annual t (\$/year)
NOX	\$10,000	0.00	\$0	per year
CO	\$5,000	2.19	\$10,960	per year
VOC	\$9,999	0.39	\$3,852	per year
PM (FH+BH)	\$23,200	0.39	\$9,052	per year
Total Reason	able Annual Control C Pollutants	ost for Combined	\$23,863	per year
l l	Actual Annual Control	Cost	\$120,766	per year
ls Th	e Control Device Reas	sonable?	NO (Actual	>> Reasonable)

ICF concludes that while DOCs are a potentially-feasible emission control technology for diesel engines, it is not economically feasible for this project. Therefore, ICF recommends that Ecology should reject this control option as BACT.

3-Way Catalysts (2-Stage Catalysts)

The theory and design of 2-stage diesel oxidation catalysts (i.e., diesel oxidation catalysts operating in a 3-way catalyst mode) was described previously under NOx controls. As stated above, one manufacturer of one such commercially-available system (Clean Emission Products) claims their systems are capable of reducing up to 99% of CO, 70% of NOx, 90% of VOC, and 90% of diesel particulate. For the Titan Data Center, Clean Emission Products issued a vendor guarantee for up to 35% NOx removal, and also provided non-guaranteed estimates of 88% for PM, 99% for CO, and 90% for VOC.

ICF is concerned that Clean Emission Products has been unable to provide stack test performance data for use of their 3-Way Catalyst on a lean-burn, Tier-2 certified modern generator. Regardless, based on Clean Emission Products' vendor guarantee for the Titan Data Center, ICF concludes this technology should be considered technically feasible for the Vantage Data Center.

However, ICF concludes 3-Way Catalysts are economically infeasible for the Vantage Data Center. As listed in Table 3WC-1 earlier in this memo, ICF estimates that the use of these catalysts would cost Vantage more than the following:

- \$125,000 for each ton of PM removed from the exhaust stream;
- \$71,000 for each ton of CO removed from the exhaust stream; and
- \$296,000 for each ton of VOC removed from the exhaust stream.

Ecology considers the above annual control cost estimates to be prohibitive under BACT guidelines. Ecology concludes that while specially designed 2-stage oxidation catalysts are promising and potentially effective for CO, PM and VOC control, they are not cost effective under general BACT guidelines. Therefore, ICF recommends Ecology should reject this technology as BACT for the Vantage Data Center.

Combustion Controls and Tier-2 Compliance

Diesel engine manufacturers typically use proprietary combustion control methods to achieve the emission reductions needed to meet applicable EPA Tier-2 standards. Common controls include fuel injection timing retard and exhaust gas recirculation. Injection timing retard reduces the peak flame temperature and NOx emissions, but may lead to higher fuel consumption.

Vantage will install generators equipped with MTU engines that will use a combination of combustion control methods, including fuel injection timing retard, to comply with EPA Tier-2 emission limits. As described in Vantage's air quality permit application, Vantage will also install add-on controls consisting of the AirClarity system.

This is the only technology that provides substantial emission reductions while also satisfying cost-effectiveness criteria. ICF recommends that Ecology should require this technology as BACT for NOx, PM, CO and VOCs.

BACT ANALYSIS FOR SULFUR DIOXIDE

ICF did not find any add-on control options commercially available and feasible for controlling sulfur dioxide emissions from diesel engines. Vantage's proposed BACT for sulfur dioxide is the use of ultra-low sulfur diesel fuel (15 ppm by weight of sulfur).

<u>BACT Recommendation for Sulfur Dioxide</u>. ICF recommends that BACT for sulfur dioxide is the use of ultra-low sulfur diesel fuel containing no more than 15 parts per million by weight of sulfur.

BEST AVAILABLE CONTROL TECHNOLOGY FOR AIR TOXICS

Best Available Control Technology for Toxics (tBACT) means BACT, as applied to toxic air pollutants. The procedure for determining tBACT follows the same procedure used above for determining BACT. Under state rules, tBACT is required for all toxic air pollutants for which the increase in emissions will exceed de minimis emission values as found in WAC 173-460-150.

For the proposed project, tBACT must be determined for each of the toxic air pollutants listed in Table TBACT-1 below. As illustrated by Table TBACT-1, ICF recommends that compliance with BACT, as determined above, satisfies the tBACT requirement.

Table TBACT-1. tBACT Determination

Toxic Air Pollutant	tBACT
Acetaldehyde	Compliance with the VOC BACT requirement
Acrolein	Compliance with the VOC BACT requirement
Benzene	Compliance with the VOC BACT requirement
Benzo(a)pyrene	Compliance with the VOC BACT requirement
1,3-Butadiene	Compliance with the VOC BACT requirement
Carbon monoxide	Compliance with the CO BACT requirement
Diesel engine exhaust particulate	Compliance with the PM BACT requirement
Formaldehyde	Compliance with the VOC BACT requirement
Nitrogen dioxide	Compliance with the NOx BACT requirement
Sulfur dioxide	Compliance with the SO ₂ BACT requirement
Toluene	Compliance with the VOC BACT requirement
Total PAHs	Compliance with the VOC BACT requirement
Xylenes	Compliance with the VOC BACT requirement

ATTACHMENT A NOMINAL-UNCONTROLLED EMISSION ESTIMATES

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NC-1. NOI	MINAL	UNCONTRO	OLLED (COI	LD-START	ADJUSTED)	EMISSION	RATES FC	OR BACT AN	ALYSIS		
				·								
able A. No	minai-Controlle	ea Cola-Si	art NOX Emiss	sions Accounti	ing for SCR De	Nominal			STEADY-STATE	REMOVAL	EFFICIENC	.IES
	Nominal Uncon.trolled	SCR	Guaranteed	Nominal Controlled		Controlled NOX Emission,	Overall Cold Start % NOX			Removal		
Load	- ,	Delay	Effcy (%)	CO, lbs/hr	SCR Control	lbs/hr	Removal		Pollutant	Effct (%)		
10%	6.0	20	0%	6.00	40	6.00	0%		Nox	0%		
81.3%	37.2	10	0%	37.17	50	37.2	0%		PM (FH+BH)	0%		
90%	43.6	10	0%	43.57	50	43.6	0%		СО	0%		
93.3%	46.1	10	0%	46.14	50	46.1	0%		VOC	0%		
100%	51.5	10	0%	51.50	50	51.5	0%					
able X. No		,		PM Emission	Rates (Include	s FH+BH Fact	or)		Total:FH Adjust	tment Fact	ors	
	Nominal Uncontrolled Front-Half Only Emiss	Front Half PM	Total PM Emiss Rate	Guaranteed	Nominal Contr Total	Dell 1-Hour Cold Start	Nominal Controlled Total PM,			Stacktest	Stacktes t FH	Total P to Fro Half P
lec Load	Rate (lbs/hr)	Ratio	(lbs/hr)	Effcy (%)	PM (lbs/hr)	Factor	lbs/hr		Load	10t PM	Only PM	Rat
10%	0.43	3.38	1.45	0%	1.451	1.058	1.54		80%-90%			3.0
81.3%	0.83	3.08	2.55	0%	2.552	1.058	2.70		100%	0.36	0.12	3.0
90%	0.95	3.08	2.92	0%	2.921	1.058	3.09		50%	0.27	0.08	3.3
93.3%	0.99	3.08	3.04	0%	3.044	1.058	3.22					
100%	1.08	3.00	3.24	0%	3.240	1.058	3.43					
			tart CO Emiss			lay Time	3.43					
able Y. No	ominal-Controll Nominal Uncontrolled	ed Cold-S Minutes DOC	tart CO Emiss Guaranteed	ions Accountir Nominal Controlled	ng for DOC De Minutes Full	lay Time Wt. Average 1- Hour CO Emission,	Cold Start	Nonimal Controlled CO. lbs/hr	Overall Cold Start % CO Removal			
able Y. No Load	Nominal Uncontrolled Rate, lbs/hr	ed Cold-S Minutes DOC Delay	tart CO Emiss Guaranteed Effcy (%)	Nominal Controlled CO, lbs/hr	ng for DOC De Minutes Full DOC Control	lay Time Wt. Average 1- Hour CO Emission, lbs/hr	Cold Start Factor	Controlled CO, lbs/hr	Start % CO Removal			
able Y. No Load 10%	Nominal Uncontrolled Rate, lbs/hr	ed Cold-S Minutes DOC Delay 20	tart CO Emiss Guaranteed Effcy (%) 0%	Nominal Controlled CO, lbs/hr 2.80	ng for DOC De Minutes Full DOC Control 40	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 2.80	Cold Start Factor 1.058	Controlled CO, lbs/hr 2.96	Start % CO Removal 0%			
Load 10% 81.3%	Nominal Uncontrolled Rate, lbs/hr	ed Cold-S Minutes DOC Delay 20 10	Guaranteed Effcy (%) 0%	Nominal Controlled CO, lbs/hr 2.80 5.30	ng for DOC De Minutes Full DOC Control 40	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 2.80 5.30	Cold Start Factor 1.058 1.058	Controlled CO, lbs/hr 2.96 5.61	Start % CO Removal 0% 0%			
Load 10% 81.3% 90%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3	Minutes DOC Delay 20 10	Guaranteed Effcy (%) 0% 0%	Nominal Controlled CO, lbs/hr 2.80 5.30 6.00	ng for DOC De Minutes Full DOC Control 40 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 2.80 5.30 6.00	Cold Start Factor 1.058 1.058	Controlled CO, lbs/hr 2.96 5.61 6.35	Start % CO Removal 0% 0% 0%			
Load 10% 81.3%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3	ed Cold-S Minutes DOC Delay 20 10	Guaranteed Effcy (%) 0%	Nominal Controlled CO, lbs/hr 2.80 5.30	ng for DOC De Minutes Full DOC Control 40	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 2.80 5.30	Cold Start Factor 1.058 1.058	Controlled CO, lbs/hr 2.96 5.61	Start % CO Removal 0% 0%			
Load 10% 81.3% 90% 93.3%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3	Minutes DOC Delay 20 10 10	Guaranteed Effcy (%) 0% 0% 0%	Nominal Controlled CO, lbs/hr 2.80 5.30 6.00 6.30	Minutes Full DOC Control 40 50 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 2.80 5.30 6.00	Cold Start Factor 1.058 1.058 1.058	Controlled CO, lbs/hr 2.96 5.61 6.35 6.67	Start % CO Removal 0% 0% 0% 0%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8	Minutes DOC Delay 20 10 10 10	Guaranteed Effcy (%) 0% 0% 0%	Nominal Controlled CO, lbs/hr 2.80 5.30 6.00 6.30 6.80	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1: Hour CO Emission, Ibs/hr 2.80 5.30 6.00 6.30 6.80	Cold Start Factor 1.058 1.058 1.058	Controlled CO, lbs/hr 2.96 5.61 6.35 6.67	Start % CO Removal 0% 0% 0% 0%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8	Minutes DOC Delay 20 10 10 10 10 ed Cold-S	Guaranteed Effcy (%) 0% 0% 0% 0%	Nominal Controlled CO, lbs/hr 2.80 5.30 6.00 6.30 6.80	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1: Hour CO Emission, Ibs/hr 2.80 5.30 6.00 6.30 6.80 elay Time Wtd Average	Cold Start Factor 1.058 1.058 1.058	Controlled CO, lbs/hr 2.96 5.61 6.35 6.67 7.19	Start % CO Removal 0% 0% 0% 0%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlle	Minutes DOC Delay 20 10 10 10 40 Minutes	Guaranteed Effcy (%) 0% 0% 0% 0% complete the complete th	Nominal Controlled CO, lbs/hr 2.80 5.30 6.00 6.30 6.80	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 2.80 5.30 6.00 6.30 6.80 elay Time Wtd Average 1-Hour	Cold Start Factor 1.058 1.058 1.058 1.058	Controlled CO, lbs/hr 2.96 5.61 6.35 6.67 7.19	Start % CO Removal 0% 0% 0% 0% 0%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlle	Minutes DOC Delay 20 10 10 10 10 ed Cold-S	Guaranteed Effcy (%) 0% 0% 0% 0%	Nominal Controlled CO, lbs/hr 2.80 5.30 6.00 6.30 sions Account	Minutes Full DOC Control 40 50 50 50 50 Minutes Full Minutes Full Minutes Full	lay Time Wt. Average 1: Hour CO Emission, Ibs/hr 2.80 5.30 6.00 6.30 6.80 elay Time Wtd Average	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start	Controlled CO, lbs/hr 2.96 5.61 6.35 6.67 7.19	Start % CO Removal 0% 0% 0% 0%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlled Nominal Uncontrolled Uncontrolled Uncontrolled	Minutes DOC Delay 20 10 10 10 40 Minutes DOC Minutes DOC	Guaranteed Effcy (%) 0% 0% 0% 0% tart VOC Emis	Nominal Controlled CO, lbs/hr 2.80 5.30 6.00 6.30 sions Account	Minutes Full DOC Control 40 50 50 50 50 Minutes Full Minutes Full Minutes Full	lay Time Wt. Average 1: Hour CO Emission, Ibs/hr 2.80 5.30 6.00 6.30 6.80 elay Time Wtd Average 1-Hour Emission,	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start	Controlled CO, lbs/hr 2.96 5.61 6.35 6.67 7.19 Nominal Controlled	Start % CO Removal 0% 0% 0% 0% OW OW OW Start %			
Load 10% 81.3% 90% 93.3% 100% Load	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlle Nominal Uncontrolled Rate, lbs/hr	ed Cold-S Minutes DOC Delay 20 10 10 10 20 Hinutes DOC Delay 20 20 20	Guaranteed Effcy (%) 0% 0% 0% 0% considerate of the consideration o	Nominal Controlled CO, lbs/hr 2.80 5.30 6.00 6.30 6.80 sions Account Nominal Controlled VOC, lbs/hr	Minutes Full DOC Control 40 50 50 50 50 Minutes Full DOC Control 40 40 40 40 40	lay Time Wt. Average 1. Hour CO Emission, Ibs/hr 2.80 5.30 6.00 6.30 6.80 elay Time Wtd Average 1-Hour Emission, Ibs/hr	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start Factor 1.058	Controlled CO, lbs/hr 2.96 5.61 6.35 6.67 7.19 Nominal Controlled VOC, lbs/hr 1.30	Start % CO Removal 0% 0% 0% 0% OW OW OW Owerall Cold Start % Removal			
Load 10% 81.3% 90% 93.3% 100% Load 10% 81.3%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlled Nominal Uncontrolled Rate, lbs/hr	Minutes DOC Delay 20 10 10 10 10 Code Cold-S Minutes DOC Delay 20 10	Guaranteed Effcy (%) 0% 0% 0% 0% tart VOC Emis Guaranteed Effcy (%)	Nominal Controlled CO, lbs/hr 2.80 5.30 6.00 6.30 6.80 sions Account	Minutes Full DOC Control 40 50 50 50 Minutes Full DOC Control 40 40 50 50 50 50 50 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	lay Time Wt. Average 1. Hour CO Emission, lbs/hr 2.80 5.30 6.30 6.30 6.80 elay Time Wtd Average 1.Hour Emission, lbs/hr 1.23	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start Factor 1.058	Controlled CO, lbs/hr 2.96 5.61 6.35 6.67 7.19 Nominal Controlled VOC, lbs/hr 1.30	Start % CO Removal 0% 0% 0% 0% 0% Owerall Cold Start % Removal			
Load 10% 81.3% 90% 93.3% 100% Load 10%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlle Nominal Uncontrolled Rate, lbs/hr	ed Cold-S Minutes DOC Delay 20 10 10 10 20 Hinutes DOC Delay 20 20 20	Guaranteed Effcy (%) 0% 0% 0% 0% considerate of the consideration o	Nominal Controlled CO, lbs/hr 2.80 5.30 6.00 6.30 6.80 sions Account Nominal Controlled VOC, lbs/hr	Minutes Full DOC Control 40 50 50 50 50 Minutes Full DOC Control 40 40 40 40 40	lay Time Wt. Average 1. Hour CO Emission, Ibs/hr 2.80 5.30 6.00 6.30 6.80 elay Time Wtd Average 1-Hour Emission, Ibs/hr	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start Factor 1.058	Controlled CO, lbs/hr 2.96 5.61 6.35 6.67 7.19 Nominal Controlled VOC, lbs/hr 1.30	Start % CO Removal 0% 0% 0% 0% OW OW OW Owerall Cold Start % Removal			

							Но	urs at Ea	ch Runt	ime Mo	ode													
Gen#	Gen Area	Elec Load	No. Gens	w	М	Q	A-F	A-Step	Correct Tests	De-En Bldg Maint	Outage or Storm Avoid	Cool	Total hrs/yr	AERMOD Hrs/day	Each Genset DPM	Each Genset Fuel Gal/Hr	Each Genset NOX Ibs/hr	Facility Wide Total PM Tons/yr	Facility- Wide Fuel Gal/Year		СО	Facility- Wide CO Tons/Yr	Each Genset HC Ibs/hr	Facility Wide VOC Tons/Y
			Gens	vv	IVI	ų						COOI	1115/ yi	nis/uay	lbs/hr	Gai/ Hi	105/111	10115/ 91	Gai/ real	10115/ 91	105/111	10115/11	105/111	TOTIS/ T
Inplanned Outage + St								Jnplanned	Outage + S	Storm Av			ī	1 .										
1-1 to 1-5	Bldg 1	81%	5								24		24	<u>24</u>	2.70	195	37.2	0.162	23,400	2.23	5.61	0.34	1.16	0.0
2-1 to 2-3	Bldg 2	90%	3								24		24	<u>24</u>	3.09	213	43.57	0.111	15,336	1.57	6.35	0.23	1.16	0.
3-1 to 3-3	Bldg 3	90%	3								24		24	<u>24</u>	3.09	213	43.57	0.111	15,336	1.57	6.35	0.23	1.16	0.
ETC-1	ETC	93%	1								24		24	<u>24</u>	3.22	220	46.14	0.039	5,280	0.55	6.67	0.08	1.16	0.
esting at Full Outag	ge Loads							Testin	g at Full O	utage Lo	ads													
1-1 to 1-5	Bldg 1	81%	5			3	6			8			17	<u>24</u>	2.70	195	37.2	0.115	16,575	1.58	5.61	0.24	1.16	0
2-1 to 2-3	Bldg 2	90%	3			3	6			8			17	24	3.09	213	43.57	0.079	10,863	1.11	6.35	0.16	1.16	5 0
3-1 to 3-3	Bldg 3	90%	3			3	6			8			17	24	3.09	213	43.57	0.079	10,863	1.11	6.35	0.16	1.16	5 (
ETC-1	ETC	93%	1			3	6			8			17	<u>24</u>	3.22	220	46.14	0.027	3,740	0.39	6.67	0.06	1.16	5 (
00% Load 1-1 to 1-5	Bldg 1	100%	ξ					Tes 0.5	iting at 10	0% Load		1	8.5	24	3.43	232	51.50	0.073	9,860	1.09	7.19	0.15	1.16	5 (
2-1 to 2-3	Bldg 2	100%	2					0.5	8				8.5	24	3.43	232	51.50	0.073	5,916	0.66	7.19	0.13	1.16	
3-1 to 3-3	Bldg 3	100%	3					0.5	8				8.5	24	3.43	232	51.50	0.044	5,916	0.66	7.19	0.09	1.16	
ETC-1	ETC	100%	1					0.5	8				8.5	24	3.43	232	51.50	0.015	1,972	0.22	7.19	0.03	1.16	
-6 and 1-7 Reserve	Bldg 1	100%	2					0.5	8				8.5	24	3.43	232	51.50	0.029	3,944	0.44	7.19	0.06	1.16	
2-4 Reserve	Bldg 2	100%	1					0.5	8				8.5	24	3.43	232	51.50	0.015	1,972	0.22	7.19	0.03	1.16	
3-4 Reserve	Bldg 3	100%	1					0.5	8				8.5	24	3.43	232	51.50	0.015	1,972	0.22	7.19	0.03	1.16	
ETC-2 Reserve	ETC	100%	1					0.5	8				8.5	24	3.43	232	51.50	0.015	1,972	0.22	7.19	0.03	1.16	
le (set to 10% for e lculations) 1-1 to 1-5	emission Bldg 1	10%	5	20	6	0	l o	0	Idle 0	0	0	9.5	35.5	24	1.54	45	6.00	0.136	7,988	0.53	2.96	0.26	1.30	0 0
2-1 to 2-3	Bldg 2	10%	3	20	6	0	0	0	0	0	0	9.5	35.5	24	1.54	45	6.00	0.082	4,793	0.32	2.96	0.16	1.30	
3-1 to 3-3	Bldg 3	10%	3	20	6	0	0	0	0	0	0	9.5	35.5	24	1.54	45	6.00	0.082	4,793	0.32	2.96	0.16	1.30	
ETC-1	ETC	10%	1	20	6	0	0	0	0	0	0	9.5	35.5	24	1.54	45	6.00	0.027	1,598	0.11	2.96	0.05	1.30	
-6 and 1-7 Reserve	Bldg 1	10%	2	20	6	3	6			8	24	1.5	68.5	24	1.54	45	6.00	0.105	6,165	0.41	2.96	0.20	1.30	_
2-4 Reserve	Bldg 2	10%	1	20	6	3	6			8	24	1.5	68.5	24	1.54	45	6.00	0.053	3,083	0.21	2.96	0.10	1.30	
3-4 Reserve	Bldg 3	10%	1	20	6	3	6			8	24	1.5	68.5	24	1.54	45	6.00	0.053	3,083	0.21	2.96	0.10	1.30	
ETC-2 Reserve	ETC	10%	1	20	6	3	6			8	24	1.5	68.5	<u>24</u>	1.54	45	6.00	0.053	3,083	0.21	2.96	0.10	1.30	
																		DM (toy)		NOV (toy)		CO (tny)		VOC
															H		acility-Wic	PM (tpy)		NOX (tpy)	1	CO (tpy)	<u> </u>	VOC

 $G. Seattle \n WProjects \n CEP_Vantage-BACT_July-2012. xls] NOM-Uncontrolled to the property of the property$

ATTACHMENT B AIRCLARITY EMISSION CONTROL SYSTEM (CATALYZED DPF + SCR) BACT ASSESSMENT

MTU AIRCLARITY CONTROL SYSTEM CATALYZED DPF + UREA SCR

ELM Permitting Information

9. Narrative of Tier-4 emission control equipment, including vendor-guaranteed removal efficiencies.

The diesel emission control strategy the AirClarity utilizes highly oxidizing precious metal particulate matter filters to control PM, HC, and CO reductions, as well as a Selective Catalytic Reducer coupled with an airless DEF injection system.

The injection system includes reductant tank level monitoring, return and supply flow metering, DPF temperature, SCR temperature (pre and post), DPF backpressure, system backpressure, and SCR outlet NOx sensor; all parameters are logged and will produce alarms should the system operate out of spec. A relative humidity sensor will also be utilized in the system, as humidity has been known to affect engine-out NOx by as much as 15% depending on ambient conditions.

The EnviCat[®] 2055 DPF is a wall flow ceramic Diesel Particulate Filter coated with a Süd-Chemie proprietary precious metal based coating on a cordierite ceramic substrate. The device is designed to filter and passively reduce >95% diesel particulate matter mass found in diesel engine exhaust. Furthermore, carbon monoxide and hydrocarbon emissions in the exhaust are reduced by means of catalytic oxidation. This device does not employ zone coating. The catalyzed DPF is also responsible for reducing hydrocarbons by almost 96%, as well as carbon monoxide reductions of greater than 99% (reductions based on engine baseline and emissions testing at 5-mode average).

The EnviCat[®] 20019 SCR is a flow through ceramic substrate coated with a Süd-Chemie proprietary SCR coating. The SCR is designed to reduce engine out NO_x emissions across a broad range of engine operating conditions.

Vendor-guaranteed removal efficiencies are as follows:

NOx >90%

CO >90%

HC >90%

PM >87%

10. Has the Tier-4 generator achieved CARB certification? If so, provide the certification data.

No. In process.

11. Vendor-estimated purchase price of emission control equipment compared to Tier-2 generators

Estimated \$400,000 increase per Tier-2 generator.

12. Vendor's "Not-to-Exceed" and "Nominal" emission data.

See attached spreadsheets for both "Not-to-Exceed" (NTE) and nominal controlled emissions information.

13. Narrative of cold-start delay time before catalysts reach activation temperature and perform at vendor-guaranteed removal efficiency

The SCR is designed to operate nominally at 900 degrees Fahrenheit, however NOx conversion can be achieved from 300 to 1000 degrees Fahrenheit. Due to the possibility of forming ammonia salts at lower temperatures, DEF will only be injected at 425 degrees Fahrenheit or higher. Should the temperatures exceed 1000 degrees, the system will alarm as temperatures higher than this can result in catalyst degradation and possible destruction of the honeycomb material. Testing on the 20v4000 indicates

we can run at 10% load and dose Urea to reduce NOx. We believe this would happen in under 20 minutes with most conditions having dosing start in less than 15 minutes.

The DPF will reduce PM at all times but should be regenerated when one of the following conditions is met:

- After back pressure readings have reached the maximum allowable backpressure per manufacturers specifications (27" W.C.)
- After 24 idle cold starts of 30-minutes or less and no regeneration has been performed between the cold starts.
- After operation below the recommended regeneration temperature of 300°C for a consecutive period of 720-minutes

Regeneration is accomplished by bringing the engine load level required to achieve a minimum 300°C exhaust gas temperature at the filter inlet and holding for a minimum period of 30-minutes. In testing with the 20v4000 the filters should regen at 10% load unless ambient temperatures are extremely low.

Should the soot loading reach a high level before cold start maximum is reached, the DPF differential pressure sensor will read a high backpressure and the system will alarm. Should the system reach 24 cold starts without reaching the maximum backpressure, the system will alarm and alert the user for the need to regenerate the DPF elements.

14. Can the vendor provide a document of stack test data?

Stack test data (except for particulate and ammonia) are attached for NOx, CO, & HC at 100%, 75%, 50%, 25%, and 10% loads. Final stack test results for ammonia and particulate are expected to be available next week and completed results will be forwarded as soon as they are received.

TABLE AII	RCLARITY-	1. AIR	CLARITY N	OMINAL C	ONTROLLE	ED (COLD-ST	TART ADJU	STED) EM	ISSION RATI	ES FOR E	BACT AN	NALYSIS
Table X Nor	minal-Controlle	d Cold-St	art NOX Emiss	sions Account	ing for SCR De				AIRCLARITY ST	ADY-STAT	E REMOV	AL EFFICIENCIES
Load	Nominal Uncon.trolled NOX, lbs/hr	Minutes SCR Delay	Guaranteed Effcy (%)	Nominal Controlled CO, lbs/hr	Minutes Full SCR Control	Nominal Controlled NOX Emission, Ibs/hr	Overall Cold Start % NOX Removal		Pollutant	Removal		
10%	6.0	20	90%	0.60	40	2.40	60%		Nox	90%		
81.3%	37.2	10	90%	3.72	50	9.29	75%		PM (FH+BH)	87%		
90%	43.6	10	90%	4.36	50	10.89	75%		CO	90%		
93.3%	46.1	10	90%	4.61	50	11.53	75%		voc	90%		
	51.5	10			50				VOC	90%		
100%	51.5	10	90%	5.15	50	12.88	75%					
Table X Nor	minal-Controlle	rd (Cold-S	tart Adjusted)	PM Emission	Rates (Include	es FH+BH Fact	or)		Total:FH Adjust	tment Each	ore	
TADIO A. INUI	Nominal	Total	Nominal	. W LINGSIUN	rates (include	o i i moi i i aci	O.)		TOTAL FO AUJUST	Intent Fact	.015	
	Uncontrolled Front-Half Only Emiss	PM to Front Half PM	Uncontrolled Total PM Emiss Rate	Guaranteed	Nominal Contr Total	Cold Start	Nominal Controlled Total PM,			Stacktest	Stacktes t FH	Total PM to Front
Elec Load	Rate (lbs/hr)	Ratio	(lbs/hr)	Effcy (%)	PM (lbs/hr)	Factor	lbs/hr		Load	Tot PM	Only PM	Half PM Ratio
10%	0.43	3.38	1.45	87%	0.189	1.058	0.200		80%-90%			3.08
81.3%	0.83	3.08	2.55	87%	0.332	1.058	0.351		100%	0.36		3.00
90%	0.95	3.08	2.92	87%	0.380	1.058	0.402		50%	0.27	0.08	3.38
93.3%	0.99	3.08	3.04	87%	0.396	1.058	0.419					
100%	1.08	3.00	3.24	87%	0.421	1.058	0.446					
Toble V No.	minal Cantralle	- 4 C - 1 4 C	tart CO Emiss	iana Aaaaumtii	on for DOC Do	lou Times						
Table 1. No	minal-Controlle	ea Cola-S	ian CO Emiss	IONS ACCOUNTI	ig ioi DOC De	lay nine						
Load	Nominal Uncontrolled Rate, lbs/hr	Minutes DOC Delay	Guaranteed Effcy (%)	Nominal Controlled CO, lbs/hr		Wt. Average 1 Hour CO Emission, lbs/hr	Cold Start Factor	Nonimal Controlled CO, lbs/hr	Overall Cold Start % CO Removal			
10%	2.8	20	90%	0.28	40	1.12	1.058	1.18	60%			
81.3%	5.3	10	90%	0.53	50	1.33	1.058	1.40	75%			
90%	6.0	10	90%	0.60	50	1.50	1.058	1.59	75%			
93.3%	6.3	10	90%	0.63	50	1.58	1.058	1.67	75%			
100%	6.8	10	90%	0.68	50		1.058	1.80	75%			
100/0	0.0	10	3070	0.00	30	1.70	1.030	1.00	7370			
Table Y. No	minal-Controlle	ed Cold-S	tart VOC Emis	sions Accoun	ting for DOC D	Delay Time						
			Guaranteed	Nominal Controlled		Wtd Average 1-Hour Emission.	Cold Start	Nominal Controlled	Overall Cold Start %			
Load	Rate, Ibs/hr	Delay	Effcy (%)	VOC, lbs/hr		lbs/hr		VOC, lbs/hr	Removal			
10%	1.2	20	90%	0.12	40		1.058	0.52	60%			
04.334			0001	0.11		6.22	4.070	0.50				
81.3%	1.1	10	90%	0.11	50	0.28	1.058	0.29	75%			
90%	1.1	10	90%	0.11	50	0.28	1.058	0.29	75%			
93.3%	1.1	10 10	90%	0.11	50	0.28	1.058	0.29	75%			
100%	1.1		90%		50		1.058	0.29	75%]		
Seattle\F:د	'NWProjects\	PACLANI	ر11_Riker	Data Center	U3_Reports-A	Analyses\BACT	-July-2012\[A	ırClarityBAC	T_July-2012.xls	JAirClarity	-NOM-Co	ntrolled

							Ho	urs at Ea	ch Runt	ime Mo	ode												
											Outage			Each	Each	Each	Facility		Facility	Each		Each	Facility-
										De-En	or			Genset	Genset	Genset	Wide		Wide	Genset	Facility-	Genset	Wide
	Gen	Elec	No.						Correct	Bldg	Storm		Total	DPM	Fuel	NOX	Total PM	Fuel	NOX		Wide CO	HC	VOC
Gen#	Area	Load	Gens	W	М	Q	A-F	A-Step	Tests	Maint	Avoid	Cool	hrs/yr	lbs/hr	Gal/Hr	lbs/hr	Tons/yr	Gal/Year	Tons/yr	lbs/hr	Tons/Yr	lbs/hr	Tons/Yr
nplanned Outage + St							Unplai	nned Outag	ge + Storm	Avoidan													
1-1 to 1-5	Bldg 1	81%	5								24		24	0.35	195	9.3	0.021	23,400	0.56	1.40	0.08	0.29	0.0
2-1 to 2-3	Bldg 2	90%	3								24		24	0.40	213	10.89	0.014	15,336	0.39	1.59	0.06	0.29	
3-1 to 3-3	Bldg 3	90%	3								24		24	0.40	213	10.89	0.014	15,336	0.39	1.59	0.06	0.29	
ETC-1	ETC	93%	1								24		24	0.42	220	11.53	0.005	5,280	0.14	1.67	0.02	0.29	0.0
esting at Full Outag	ge Loads						Te	esting at F	ull Outage	Loads													
1-1 to 1-5	Bldg 1	81%	5			3	6			8			17	0.35	195	9.3	0.015	16,575	0.39	1.40	0.06	0.29	0.0
2-1 to 2-3	Bldg 2	90%	3			3	6			8			17	0.40	213	10.89	0.010	10,863	0.28	1.59	0.04	0.29	
3-1 to 3-3	Bldg 3	90%	3			3	6			8		igspace	17	0.40	213	10.89	0.010	10,863	0.28	1.59	0.04	0.29	
ETC-1	ETC	93%	1			3	6			8			17	0.42	220	11.53	0.004	3,740	0.10	1.67	0.01	0.29	0.0
00% Load								Testing a	it 100% Lo	ad		-											
1-1 to 1-5	Bldg 1	100%	5					0.5	8				8.5	0.45	232	12.88	0.009	9,860	0.27	1.80	0.04	0.29	0.0
2-1 to 2-3	Bldg 2	100%	3					0.5	8				8.5	0.45	232	12.88	0.006	5,916	0.16	1.80	0.02	0.29	0.0
3-1 to 3-3	Bldg 3	100%	3					0.5	8				8.5	0.45	232	12.88	0.006	5,916	0.16	1.80	0.02	0.29	0.0
ETC-1	ETC	100%	1					0.5	8				8.5	0.45	232	12.88	0.002	1,972	0.05	1.80	0.01	0.29	0.0
1-6 and 1-7 Reserve	Bldg 1	100%	2					0.5	8				8.5	0.45	232	12.88	0.004	3,944	0.11	1.80	0.02	0.29	
2-4 Reserve	Bldg 2	100%	1					0.5	8				8.5	0.45	232	12.88	0.002	1,972	0.05	1.80	0.01	0.29	0.0
3-4 Reserve	Bldg 3	100%	1					0.5	8				8.5	0.45	232	12.88	0.002	1,972	0.05	1.80	0.01	0.29	0.0
ETC-2 Reserve	ETC	100%	1					0.5	8				8.5	0.45	232	12.88	0.002	1,972	0.05	1.80	0.01	0.29	0.0
dle (set to 10% for e	emission																						
alculations)									Idle														
1-1 to 1-5	Bldg 1	10%	5	20	6	0	0	0	0	0	0	9.5	35.5	0.20	45	2.40	0.018	7,988	0.21	1.18	0.11	0.52	
2-1 to 2-3	Bldg 2	10%	3	20	6	0	0	0	0	0	0	9.5	35.5	0.20	45	2.40	0.011	4,793	0.13	1.18	0.06	0.52	
3-1 to 3-3	Bldg 3	10%	3	20	6	0	0	0	0	0	0	9.5	35.5	0.20	45	2.40	0.011	4,793	0.13	1.18	0.06	0.52	
ETC-1	ETC	10%	1	20	6	0	0	0	0	0	0	9.5	35.5	0.20	45	2.40	0.004	1,598	0.04	1.18	0.02	0.52	
1-6 and 1-7 Reserve	Bldg 1	10%	2	20	6	3	6			8	24	1.5	68.5	0.20	45	2.40	0.014	6,165	0.16	1.18	0.08	0.52	
2-4 Reserve	Bldg 2	10%	1	20	6	3	6			8	24	1.5	68.5	0.20	45	2.40	0.007	3,083	0.08	1.18	0.04	0.52	
3-4 Reserve	Bldg 3	10%	1	20	6	3	6			8	24	1.5	68.5	0.20	45	2.40	0.007	3,083	0.08	1.18	0.04	0.52	
ETC-2 Reserve	ETC	10%	1	20	6	3	6			8	24	1.5	68.5	0.20	45	2.40	0.007	3,083	0.08	1.18	0.04	0.52	0.0
																	Total PM		NOX		со		V
														COI	NTROLLE) Facility-		Ì					
																Emissions	0.203	169,500	4.38		0.958		0.2
														UNCO	NTROLLE								
																Emissions	1.56		16.14		3.15		0.8
																Removed	1.36		11.76		2.19		0
														Overa		al Effcy, %			73%		70%		6
														Overa	II INCIIIOV								

Vantage Data Center					
Cost Category	Cost Factor	Source of Cost Factor	Quant.	Unit Cost	Subtotal Cost
Direct Costs					
Purchased Equipment Costs					
FOB Purchase Price	As quoted by MTU	MTU	17	\$400,000	\$6,800,000
Instrumentation	Assume no cost	Assume no cost	0	0	0
Sales Tax	WA state tax	WA state tax	6.5%		\$442,000
Shipping	0.05A	EPA Cost Manual	5.0%		\$340,000
Subtotal Purchased Equipment Cost, PEC					\$7,582,000
Direct Installation Costs		ΙΔ	1	461	**
Enclosure structural supports	Assume no cost	Assume no cost	0	\$0	\$0
Installation	1/2 of EPA Cost Manual	1/2 of EPA Cost Manual	2.5%		\$189,550
Electrical	Assume no cost	Assume no cost	0	0	0
Piping	Assume no cost	Assume no cost	0	0	0
Insulation	Assume no cost	Assume no cost	0	0	0
Painting	Assume no cost	Assume no cost	0	0	0
Subtotal Direct Installation Costs					\$189,550
Site Preparation and Buildings (SP)	Assume no cost	Assume no cost	0	0	0
Total Direct Costs, DC (PEC + Direct Install	ation + Site Prep)				\$7,771,550
ndirect Costs (Installation)					
Engineering	0.025*PEC	1/4 of EPA Cost Manual	2.5%		\$189,550
Construction and field expenses	0.025*PEC	1/2 of EPA Cost Manual	2.5%		\$189,550
Contractor Fees	From DIS data center	From DIS data center	6.8%		\$532,645
Startup	0.02*PEC	EPA Cost Manual	2.0%		\$151,640
Performance Test (Tech support)	0.01*PEC	EPA Cost Manual	1.0%		\$75,820
Contingencies	0.03*PEC	EPA Cost Manual	3.0%		\$227,460
Subtotal Indirect Costs, IC					\$1,366,665
				•	
Total Capital Investment (TCI = DC+IC)					\$9,138,215
					TCI per gen

Item	Quantity	Units	Unit cost	Subtotal					
	Annualized (Capital Recovery	•						
Total Capital Cost				\$9,138,215		TCI/gen		\$537,542	
Capital Recovery Factor	, 25 yrs, 4% discount rate			0.06401					
Subtotal Annualized 25-	year Capital Recovery Cost			\$584,937					
	Direct A	nnual Costs							
Annual Admin charges	2% of TC	l (EPA Manual)	0.02	\$182,764					
Annual Property tax	1% of TC	l (EPA Manual)	0.01	\$91,382					
Annual Insurance	1% of TC	l (EPA Manual)	0.01	\$91,382					
value of \$3.00/hp/year an assume zero annual O&I ncreased inspections, p	aintenance costs: Upperboun d would result in \$206,000/yea M. Mid-range value would accoeriodic OEM visits, and the cost this screening-level analysis.	r. Lower bound estimate unt for urea, fuel for pres ts for Ecology's increase	e would sure drop, d emission						
annual O&M cost of zero				\$0					
Subtotal Direct Annual	Costs			\$365,529	Combined Pollutants Removal Toni	nages (Nominal	-Controlled)		
Fotal Annual Cost (Ca	pital Recovery + Direct An	nual Costs)		\$950,466	Pollutant	PM (FH+BH)	CO	VOC	NO
Uncontrolled emission	ns (Combined Pollutants)			21.7	Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1
Assumed Control Effi	ciency			Varies	Nominal Cold-Start Controlled TPY	0.203	0.958	0.293	4.38
Annual Tons Remove	d (Combined Pollutants)			15.89	Tons Removed/Year	1.36	2.19	0.578	11.8
Cost Effectiveness (\$ p	er tons combined pollutar	nt destroyed)		\$59,823	Overall Cold-Start Removal Effcy	87%	70%	66%	73%
					Indiv Poll \$/Ton Removed	\$700,039	\$433,611	\$1,644,950	\$80,8
Multi BallutantCast Ff	io ativo ma co for Accountable	Control Cost vo Astro	al Cantral C						
Multi-PollutantCost-Er	Ecctiveness for Acceptable Ecology Acceptable Unit Cost (\$/ton)	Forecast Removal	Subtotal A	cceptable Annual st (\$/year)					
VOX	\$10,000	11.76	\$117,604	per year					
CO	\$5,000	2.19	\$10,960	per year					
VOC	\$9,999	0.58	\$5,778	per year					
PM (FH+BH)	\$23,200	1.36	\$31,499	per year					
Total Accetable A	nnual Control Cost for Con	nbined Pollutants	\$165,841	per year					
	Actual Annual Control Cost		\$950,466	per year					
ls Th	e Control Device Reasonal	ole?		l >> Acceptable)					

ATTACHMENT C CATALYZED DPF BACT ASSESSMENT

CATALYZED DPF TECHNICAL DATA AND COST QUOTE SABEY-INTERGATE-QUINCY DATA CENTER

PROPOSAL

Proposal Date: Wednesday, December 08, 2010 10120806RW-F Quotation Number:

Customer Contact: John Ford

Title: Director of Technology Real Extate

Email: johnf@sabey.com Phone: 206-277-5209

Cell:

Company Name: Sabey Corporation

Address: 12201 Tukwila International Blvd.

Seattle, WA 98168

Project Description

Sabey Construction - CAT 3516C 2000 ekW Generator

Address:

Product Quoted:

PERMIT Filter System in a 304L Stainless Steel Double Wall Insulated Critical

Grade Silencer

Purchase Order Date:

Requested Installation Date:

Engine Specifications:

Engine Model: 3516C

EPA Tier Level: Tier 2

Engine S/N: EPA Family #:

Engine Displacement:

69 liters Engine Specification #: DM8263 Engine Model Year: 2010

Fuel Type: ULSD (<50 PPM)

CAT

Required Fuel Content:

<50 ppm Sulfur

Model #:

Generator Power Rating:

2,000

ekW

Standby

Average Running Load:

Runtime:

hours/year kW @

Engine Power Output: 2,937 bhp or

Exhaust Flow Rate: 15,136

2188

RPM 1,800

ACFM Exhaust Stack Temp: 762 deg F

Maximum Exhaust Pressure: inches H₂O 27

Emissions Specifications:

Engine Emissions: Certified

NOx:

3.93 g/bhp-hr

CO:

0.49 g/bhp-hr

HC:

PM:

0.25 g/bhp-hr 0.08 g/bhp-hr

Emissions Reduction Required:

% Reduction

CO:

g/bhp-hr

HC:

g/bhp-hr

PM:

g/bhp-hr

Emissions Post After Treatment:

Estimated

% Reduction

CO:

0.049 g/bhp-hr

90%

HC:

0.025 g/bhp-hr

90%

PM:

0.012 g/bhp-hr

85%

PERMIT Filter Specifications:

Material: Catalyzed Cordierite Ceramic wall-flow filter substrates

PM Reduction: 85%

CARB Level 3+ verified for greater than 85%

CO Reduction: 90%

HC(VOC) Reduction:

90%

PERMIT Filter Part Number: FDA221

Number of Filters:

9

Filter Pressure Drop:

10.2 inches H2O as configured at rated load

Regeneration using ULSD:

Above 350 deg C (662 deg F) for 30% of the engine operating time and

greater than 40% engine load

Stationary Cold Starts:

12

consecutive 10 minute idle sessions followed by 2 hrs regeneration

Cleaning:

2,500

hour intervals

Catalyst Life Expectancy:

10,000 hours

Critical Grade Silencer Housing Specifications:

10081103AF

Material: 304L Stainless Steel

Construction: Double Wall, Rigid, & Light Weight

Insulation:

2" Between two 304L Stainless Steel Walls

90 " Width 52

Approximate Dimensions (inches):

96 " Length

" Height

Estimated Weight: 3,750

pounds

1,705 kilograms

Sound Reduction: Total System Pressure Drop Silencer+DPF:

27-35 dBa, Critical Grade Silencing 13.2

inches H₂O as configured at rated load

22

Flange

Inlet Size: Outlet Size: inches

22

inches

Flange

HIBACK USB Controller:

07010204AG

Data Logger: Monitors and Records the Exhaust Temperature, Pressure, Date, and Time every 15 sec. for

26,000 readings

Alarm System: Red warning light for maximum pressure exceeded

Yellow warning light for pending high pressure levels

Self Diagnostics: Flashing lights indicate if the pressure or temperature not recording

Rugged Construction: Cast Aluminum weathertight housing

Easy data downloads: With software the logged data can be downloaded to an excel spreadsheet for analysis

This System Includes:

PERMIT DPF Yes >85% PM, >90% CO, >90% HC Reductions

CRITICAL GRADE SILENCER - Stainless Steel Yes Double wall Insulated Critical Grade Silencer

HiBACK USB Controller Yes Required by CARB and to validate warranty

HiBACK USB Level 2 Software Yes Required to download HiBACK USB data information

Operation & Maintenance Manual Yes

This System Excludes:

Delivery/Freight Expenses

Installation of the PERMIT Filter System

Exhaust piping insulation (CleanAIR Systems recommends insulating the exhaust from the engine to the inlet of the filter)

All necessary permitting

Terms & Conditions:

FOB Santa Fe

Shipping Date:

weeks from date of purchase order and approved design

Terms:

Net 30 Days

12

Proposal Valid:

30 days from proposal date

Warranty:

year(s) or 1,000 hours of Operation from Commissioning

Notes:

Pricing:

	Part Number	Description	Quantity	Unit Price	Total (USD)
1	10081103AF	PERMIT Filter In an Insulated Double Wall 304L Stainless Steel Critical Grade Silencer System	3	\$106,586	\$319,758.00
2	07010204AG	HiBACK USB Pressure Alarm/ Data Logger	3	\$1,023	\$3,069.00
3	07010202AG	HiBACK USB Level 2 Software	11	\$165	\$165.00
4					\$
5			Handlin	g/Skidding:	\$3,229,91
6			Estimat	ted Freight:	
				Total:	\$329,221.91

	Recommended Opti	onal Equipment:				
	Part Number	Description	Quantity	Unit Price	Total (USD)	
1		Custom Insulating Blanket for exhaust piping, etc.	Size TBD		TBD	
2		Load Bank	Size TBD		TBD	
3					\$	-
4		Spare Set of Filter Elements for one system	9	\$8,992.50	\$80,932.50	

Handling/Skidding: 1% of the total order will be charged to prepare the unit for shipping with a \$10 minimum for orders under \$100, \$20 minimum for orders \$101 to \$1000, and a \$30 minimum for orders \$1,001 to \$3,000.

Order Cancellations: Standard Parts - A flat 20% fee will be charged on canceled orders for standard parts.

Custom Parts - Customer will incur all expenses at the time of order cancellation including; materials, engineering & labor plus 20

Contact Information:

N C Power Systems

For additional information, visit:

Don Lee King

Power Generation Sales

425-656-4586

DLKing@ncpowersystems.com

			DPF NOM		·			-				
able X. No	minal-Controlle	ed Cold-St	art NOX Emiss	sions Account	ing for 3WC D	elay Time			CATALYZED DPF ST	EADY-STATE R	EMOVAL	EFFICIENCIES
	Nominal Uncon.trolled	Minutes SCR	Guaranteed	Nominal Controlled		Nominal Controlled NOX Emission,	Overall Cold Start % NOX		CATALIZED DIT 311	Removal	LINOVAL	er received
Load	NOX, lbs/hr	Delay	Effcy (%)	CO, lbs/hr	SCR Control	lbs/hr	Removal		Pollutant	Effct (%)		
10%	6.0	20	0%	6.00	40	6.00	0%		Nox	0%		
81.3%	37.2	10	0%	37.17	50	37.17	0%		PM (FH+BH)	85%		
90%	43.6	10	0%	43.57	50	43.57	0%		co	90%		
93.3%	46.1	10	0%	46.14	50	46.14	0%		VOC	90%		
100%	51.5	10	0%	51.50		51.50	0%		VOC	3070		
able X. No	minal-Controlle	ed (Cold-S	tart Adjusted)	PM Emission	Rates (Include	s FH+BH Fact	or)		Total:FH Adjustme	nt Factors		
	Nominal	Total	Nominal		,		,					
lec Load	Uncontrolled Front-Half Only Emiss Rate (lbs/hr)		Uncontrolled Total PM Emiss Rate (lbs/hr)	Guaranteed Effcy (%)	Nominal Contr Total PM (lbs/hr)	Dell 1-Hour Cold Start Factor	Nominal Controlled Total PM, Ibs/hr		Load	StacktestTot PM	Stacktes t FH Only PM	Total PM to Fror Half PM Rati
10%	0.43	3.38	1.45	85%	0.218	1.058	0.230		80%-90%			3.0
81.3%	0.83	3.08	2.55	85%	0.383	1.058	0.405		100%	0.36	0.12	3.0
90%	0.95	3.08	2.92	85%	0.438	1.058	0.464		50%	0.27	0.08	3.3
93.3%	0.99	3.08	3.04	85%	0.457	1.058	0.483		50/1	V		
100%	1.08	3.00	3.24	85%	0.486	1.058	0.514					
		5.00	5.2-	6570	0.400	1.036	0.514					
able Y. No	Nominal	ed Cold-S	tart CO Emiss	ions Accountir	ng for DOC De	lay Time Wt. Average 1- Hour CO		Nonimal	0 2011 0 11 0 10			
able Y. No		ed Cold-S		ions Accounting Nominal Controlled	ng for DOC De	lay Time Wt. Average 1-	Cold Start Factor	Nonimal Controlled CO, lbs/hn	Overall Cold Start % CO Removal			
	Nominal Uncontrolled	ed Cold-S Minutes DOC	tart CO Emiss Guaranteed	ions Accounting Nominal Controlled	ng for DOC De Minutes Full	lay Time Wt. Average 1- Hour CO Emission,	Cold Start	Controlled				
Load	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3	ed Cold-Si Minutes DOC Delay 20 10	Guaranteed Effcy (%) 90% 90%	Nominal Controlled CO, lbs/hr	ng for DOC De Minutes Full DOC Control 40	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 1.12	Cold Start Factor	Controlled CO, lbs/hr 1.18 1.40	% CO Removal 60% 75%			
Load 10%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0	ed Cold-S Minutes DOC Delay 20	tart CO Emiss Guaranteed Effcy (%) 90%	Nominal Controlled CO, lbs/hr 0.28	Minutes Full DOC Control 40 50	lay Time Wt. Average 1- Hour CO Emission, lbs/hr 1.12	Cold Start Factor 1.058	Controlled CO, lbs/hr 1.18 1.40 1.59	% CO Removal 60% 75% 75%			
Load 10% 81.3%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3	ed Cold-Si Minutes DOC Delay 20 10	Guaranteed Effcy (%) 90% 90%	Nominal Controlled CO, lbs/hr 0.28 0.53	ng for DOC De Minutes Full DOC Control 40	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 1.12	Cold Start Factor 1.058 1.058	Controlled CO, lbs/hr 1.18 1.40	% CO Removal 60% 75% 75%			
Load 10% 81.3% 90%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0	Minutes DOC Delay 20 10	Guaranteed Effcy (%) 90% 90% 90%	Nominal Controlled CO, lbs/hr 0.28 0.53	Minutes Full DOC Control 40 50	Wt. Average 1- Hour CO Emission, Ibs/hr 1.12 1.33	Cold Start Factor 1.058 1.058 1.058	Controlled CO, lbs/hr 1.18 1.40 1.59	% CO Removal 60% 75% 75%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8	Minutes DOC Delay 20 10 10 10	Guaranteed Effcy (%) 90% 90% 90% 90%	Nominal Controlled CO, lbs/hr 0.28 0.53 0.60 0.63	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 1.12 1.33 1.50 1.58 1.70	Cold Start Factor 1.058 1.058 1.058	Controlled CO, lbs/hr 1.18 1.40 1.59	% CO Removal 60% 75% 75% 75%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8	Minutes DOC Delay 20 10 10 10	Guaranteed Effcy (%) 90% 90% 90% 90%	Nominal Controlled CO, lbs/hr 0.28 0.53 0.60 0.63	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 1.12 1.33 1.50 1.58 1.70	Cold Start Factor 1.058 1.058 1.058	Controlled CO, lbs/hr 1.18 1.40 1.59	% CO Removal 60% 75% 75% 75%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlle	Minutes DOC Delay 20 10 10 10 Minutes	Guaranteed Effcy (%) 90% 90% 90% 90%	Nominal Controlled CO, Ibs/hr 0.28 0.53 0.60 0.63 0.68	mg for DOC De Minutes Full DOC Control 40 50 50 50 ting for DOC D	lay Time Wt. Average 1: Hour CO Emission, Ibs/hr 1.12 1.33 1.50 1.58 1.70 Wtd Average 1-Hour	Cold Start Factor 1.058 1.058 1.058 1.058	Controlled CO, lbs/hr 1.18 1.40 1.59 1.67 1.80 Nominal	% CO Removal 60% 75% 75% 75% 75%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8	Minutes DOC Delay 20 10 10 10 ed Cold-S	Guaranteed Effcy (%) 90% 90% 90% 90%	Nominal Controlled CO, lbs/hr 0.28 0.53 0.60 0.63	mg for DOC De Minutes Full DOC Control 40 50 50 50 50 Minutes Full	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 1.12 1.33 1.50 1.58 1.70 elay Time Wtd Average	Cold Start Factor 1.058 1.058 1.058 1.058	Controlled CO, lbs/hr 1.18 1.40 1.59 1.67	% CO Removal 60% 75% 75% 75% 75%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlled Nominal Uncontrolled	Minutes DOC Delay 20 10 10 10 40 Minutes DOC Minutes DOC	Guaranteed Effcy (%) 90% 90% 90% 90% 400% Guaranteed	Nominal Controlled CO, lbs/hr 0.28 0.53 0.60 0.63 0.68	mg for DOC De Minutes Full DOC Control 40 50 50 50 50 Minutes Full	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 1.12 1.33 1.50 1.58 1.70 elay Time Wtd Average 1-Hour Emission,	Cold Start Factor 1.058 1.058 1.058 1.058	Controlled CO, lbs/hr 1.18 1.40 1.59 1.67 1.80 Nominal Controlled	% CO Removal 60% 75% 75% 75% 75% 0verall Cold Start			
Load 10% 81.3% 90% 93.3% 100% Load	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlled Nominal Uncontrolled Rate, Ibs/hr	Minutes DOC Delay 20 10 10 10 20 Minutes DOC Delay 20 20 20 20	Guaranteed Effcy (%) 90% 90% 90% 90% Guaranteed Effcy (%)	Nominal Controlled CO, Ibs/hr 0.28 0.53 0.60 0.63 0.68 sions Accoun Nominal Controlled VOC, Ibs/hr	Minutes Full DOC Control 40 50 50 50 ting for DOC D	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 1.12 1.33 1.50 1.58 1.70 elay Time Wtd Average 1-Hour Emission, Ibs/hr 0.49	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start Factor	Controlled CO, lbs/hr 1.18 1.40 1.59 1.67 1.80 Nominal Controlled VOC, lbs/hr 0.52	% CO Removal 60% 75% 75% 75% 75% 75% Overall Cold Start % Removal			
Load 10% 81.3% 90% 93.3% 100% Load 10% 81.3%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlled Nominal Uncontrolled Rate, Ibs/hr 1.2	Minutes DOC Delay 20 10 10 10 20 Minutes DOC Delay 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Guaranteed Effcy (%) 90% 90% 90% 90% tart VOC Emis Guaranteed Effcy (%) 90%	Nominal Controlled CO, Ibs/hr 0.28 0.53 0.60 0.63 0.68 sions Accoun Nominal Controlled VOC, Ibs/hr 0.12	Minutes Full DOC Control 40 50 50 50 ting for DOC D Minutes Full DOC Control 40 50 50 50 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 1.12 1.33 1.50 1.58 1.70 elay Time Wtd Average 1-Hour Emission, Ibs/hr 0.49	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start Factor 1.058	Controlled CO, lbs/hr 1.18 1.40 1.59 1.67 1.80 Nominal Controlled VOC, lbs/hr 0.52	% CO Removal 60% 75% 75% 75% 75% 0verall Cold Start % Removal 60%			
Load 10% 81.3% 90% 93.3% 100% Load	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlled Nominal Uncontrolled Rate, Ibs/hr	Minutes DOC Delay 20 10 10 10 20 Minutes DOC Delay 20 20 20 20	Guaranteed Effcy (%) 90% 90% 90% 90% Guaranteed Effcy (%)	Nominal Controlled CO, Ibs/hr 0.28 0.53 0.60 0.63 0.68 sions Accoun Nominal Controlled VOC, Ibs/hr	Minutes Full DOC Control 40 50 50 50 ting for DOC D	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 1.12 1.33 1.50 1.58 1.70 elay Time Wtd Average 1-Hour Emission, Ibs/hr 0.49	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start Factor	Controlled CO, lbs/hr 1.18 1.40 1.59 1.67 1.80 Nominal Controlled VOC, lbs/hr 0.52	% CO Removal 60% 75% 75% 75% 75% Overall Cold Start % Removal 60% 75% 75%			

							Нο	urs at Fa	ch Runt	ime Mr	ode												
								4.546.20			Outage			Eac	1 Each	Each	Facility	Facility-	Facility	Each		Each	Facility-
										De-En	or			Gense		Genset	Wide	Wide	Wide	Genset	Facility-	Genset	Wide
	Gen	Elec	No.						Correct	Bldg	Storm		Total	DPN	1 Fuel	NOX	Total PM	Fuel	NOX		Wide CO	НС	voc
Gen#	Area	Load	Gens	W	М	Q	A-F	A-Step	Tests	Maint	Avoid	Cool	hrs/yr	lbs/h		lbs/hr	Tons/yr	Gal/Year	Tons/yr	lbs/hr	Tons/Yr	lbs/hr	Tons/Yr
Inplanned Outage + St	torm Avoida	ance					Unplar	nned Outai	ge + Storm	Avoidano	ce												
1-1 to 1-5	Bldg 1	81%	5							1	24		24	0.4	1 195	37.2	0.024	23,400	2.23	1.40	0.08	0.29	0.0
	Drug 1	0170												0	155	37.12	0.02	23, 100	2.23	2. 10	0.00	0.23	0.0
																40.55		45.000		4.50		0.00	
2-1 to 2-3	Bldg 2	90%	3								24		24	0.4		43.57	0.017	15,336	1.57			0.29	
3-1 to 3-3 ETC-1	Bldg 3	90%	3								24		24	0.4		43.57	0.017	15,336	1.57	1.59		0.29	
	ETC	93%	1								24		24	0.4	220	46.14	0.006	5,280	0.55	1.67	0.02	0.29	0.00
esting at Full Outag			<u> </u>			-		esting at Fi	ull Outage		1			0.4	405	07.0	2.04=	46.535	4.50	4.40	0.00	0.00	
1-1 to 1-5	Bldg 1	81%	5		<u> </u>	3	6			8	 	-	17	0.4		37.2	0.017	16,575	1.58	1.40	0.06	0.29	
2-1 to 2-3	Bldg 2	90%	3			3	6			8			17	0.4		43.57	0.012	10,863	1.11	1.59	0.04	0.29	
3-1 to 3-3	Bldg 3	90%	3			3	6		-	8	-		17	0.4		43.57	0.012	10,863	1.11	1.59	0.04	0.29	
ETC-1	ETC	93%	1		l	3	6		l	8	l		17	0.4	220	46.14	0.004	3,740	0.39	1.67	0.01	0.29	0.00
LOO% Load									t 100% Lo	ad													
1-1 to 1-5	Bldg 1	100%	5					0.5	8				8.5	0.5		51.50	0.011	9,860	1.09	1.80	0.04	0.29	
2-1 to 2-3	Bldg 2	100%	3					0.5	8				8.5	0.5		51.50	0.007	5,916	0.66	1.80	0.02	0.29	
3-1 to 3-3	Bldg 3	100%	3					0.5	8				8.5	0.5		51.50	0.007	5,916	0.66	1.80	0.02	0.29	
ETC-1	ETC	100%	1			-		0.5	8				8.5	0.5		51.50	0.002	1,972	0.22	1.80		0.29	
1-6 and 1-7 Reserve 2-4 Reserve	Bldg 1	100%	1					0.5	8				8.5	0.5 0.5		51.50 51.50	0.004	3,944 1,972	0.44 0.22	1.80	0.02 0.01	0.29	
3-4 Reserve	Bldg 2	100%	1			-		0.5	8				8.5	0.5		51.50	0.002	1,972	0.22	1.80	0.01	0.29	
ETC-2 Reserve	Bldg 3	100%	1			-		0.5					8.5	0.5		51.50	0.002		0.22	1.80	0.01	0.29	
ETC-2 Reserve	ETC	100%	1			l		0.5	8	<u> </u>			8.5	0.5	232	51.50	0.002	1,972	0.22	1.80	0.01	0.29	0.00
dle (set to 10% for e	emission																						
calculations)									Idle									-					
1-1 to 1-5	Bldg 1	10%	5	20	6	0	0	0	0	0	0	9.5	35.5	0.2			0.020	7,988	0.53	1.18		0.52	
2-1 to 2-3	Bldg 2	10%	3	20	6	0	0	0	0	0	0	9.5	35.5	0.2			0.012	4,793	0.32	1.18		0.52	
3-1 to 3-3	Bldg 3	10%	3	20	6	0	0	0	0	0	0	9.5	35.5	0.2		6.00	0.012	4,793	0.32	1.18		0.52	
ETC-1	ETC	10%	1	20	6	0	0	0	0	0	0	9.5	35.5	0.2		6.00	0.004	1,598	0.11	1.18	0.02	0.52	
1-6 and 1-7 Reserve	Bldg 1	10%	2	20	6	3	6			8	24	1.5	68.5	0.2			0.016	6,165	0.41	1.18		0.52	
2-4 Reserve	Bldg 2	10%	1	20	6	3	6			8	24	1.5	68.5	0.2		6.00	0.008	3,083	0.21	1.18	0.04	0.52	
3-4 Reserve ETC-2 Reserve	Bldg 3	10%	1	20	6	3	6			8	24	1.5	68.5	0.2		6.00	0.008	3,083	0.21 0.21	1.18 1.18	0.04	0.52 0.52	
ETC-2 Reserve	ETC	10%	1	20	6	3	6			8	24	1.5	68.5	0.2	45	6.00	0.008	3,083	0.21	1.18	0.04	0.52	0.01
														1								1	
														<u></u>			Total PM		NOX		со	<u> </u>	VO
														CC	NTROLLE	D Facility-							
															Wide	Emissions	0.234	169,500	16.14		0.958	<u> </u>	0.29
														UNC	ONTROLLE								
																Emissions	1.56		16.14		3.15	1	0.8
															Tons/Yr	Removed	1.33		0.00		2.19		0.5
																					2.13		
														Over		al Effcy, %	85%		0%		70%		66

Vantage Data Center					
Cost Category	Cost Factor	Source of Cost Factor	Quant.	Unit Cost	Subtotal Cos
Division October					
Direct Costs			1 1		
Purchased Equipment Costs					
FOB purchase price for Sabey Data Center was scaled using the "0.6 rule": Cost for 3				e's 3,000 kW	e generators
Vantage 3000 kWe FOB Purchase Price	Clean Emission Products	CEP	17	\$139,900	\$2,378,300
Instrumentation	Assume no cost	Assume no cost	0	0	(
Sales Tax	WA state tax	WA state tax	6.5%		\$154,590
Shipping	0.05A	EPA Cost Manual	5.0%		\$118,915
Subtotal Purchased Equipment Cost, PEC	•				\$2,651,805
				-	
Direct Installation Costs					
Enclosure structural supports	From MSFT CO-3	Robinson Enclosures	0	\$9,812	\$(
Installation	1/2 of EPA Cost Manual	1/2 of EPA Cost Manual	2.5%		\$66,295
Electrical	Assume no cost	Assume no cost	0	0	(
Piping	Assume no cost	Assume no cost	0	0	(
Insulation	Assume no cost	Assume no cost	0	0	(
Painting	Assume no cost	Assume no cost	0	0	(
Subtotal Direct Installation Costs					\$66,295
				•	
Site Preparation and Buildings (SP)	Assume no cost	Assume no cost	0	0	(
Total Direct Costs, DC (PEC + Direct Installa	tion + Site Prep)				\$2,718,100
Indirect Costs (Installation)					
Engineering	0.025*PEC	1/4 of EPA Cost Manual	2.5%		\$66,295
Construction and field expenses	0.025*PEC	1/2 of EPA Cost Manual	2.5%		\$66,295
Contractor Fees	From DIS data center	From DIS data center	6.8%		\$198,87 <i>′</i>
Startup	0.02*PEC	EPA Cost Manual	2.0%		\$53,036
Performance Test (Tech support)	0.01*PEC	EPA Cost Manual	1.0%		\$26,518
Contingencies	0.03*PEC	EPA Cost Manual	3.0%		\$79,554
Subtotal Indirect Costs, IC					\$490,570
Total Capital Investment (TCI = DC+IC)					\$3,208,669
					TCI per ger
					\$188,745

Item	Quantity	Units	Unit cost	Subtotal					
	Annualized C	Capital Recovery							
Total Capital Cost				\$3,208,669		TCI/gen		\$188,745	
Capital Recovery Factor, 25	5 yrs, 4% discount rate			0.06401					
Subtotal Annualized 25-yea	ar Capital Recovery Cost			\$205,387					
		nnual Costs							
Annual Admin charges	2% of TC	l (EPA Manual)	0.02	\$64,173					
Annual Property tax		l (EPA Manual)	0.01	\$32,087					
Annual Insurance	1% of TC	I (EPA Manual)	0.01	\$32,087					
For this screening-level ana	lysis we assumed the lowe	er-bound annual O&M c	ost of zero.	\$0					
Subtotal Direct Annual Cos	sts			\$128,347	Combined Pollutants Removal Toni	nages (Nomina	I-Controlled)		
Total Annual Cost (Capita	al Recovery + Direct Ann	nual Costs)		\$333,734	Pollutant	PM (FH+BH)	CO	VOC	NOX
Uncontrolled emissions (Combined Pollutants)			21.7	Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1
Assumed Control Efficier	ncy			Varies	Nominal Cold-Start Controlled TPY	0.234	0.958	0.293	16.14
Annual Tons Removed (C	Combined Pollutants)			4.10	Tons Removed/Year	1.33	2.19	0.578	0.0
Cost Effectiveness (\$ per	tons combined pollutan	t destroyed)		\$81,472	Overall Cold-Start Removal Effcy	85%	70%	66%	0%
					Indiv Poll \$/Ton Removed	\$251,586	\$152,252	\$577,585	#DIV/0
Multi-PollutantCost-Effect	tiveness for "Reasonable	e Control Cost" vs. Ac	tual Control	Cost					
	Ecology Acceptable Unit Cost	Forecast Removal		cceptable Annual					
Pollutant	(\$/ton)	(tons/yr)		st (\$/year)					
NOX	\$10,000	0.00	\$0	per year					
CO	\$5,000	2.19	\$10,960	per year					
VOC	\$9,999	0.58	\$5,778	per year					
PM (FH+BH)	\$23,200	1.33	\$30,775	per year					
Total Reasonable Ann	ual Control Cost for Cor	mbined Pollutants	\$47,513	per year					
Actu	ual Annual Control Cost		\$333,734	per year					
Is The C	ontrol Device Reasonab	ole?	NO (Actua	l >> Acceptable)					

ATTACHMENT D UREA-SCR CONTROL SYSTEM BACT ANALYSIS

UREA-SCR TECHNICAL DATA AND COST QUOTE SABEY-INTERGATE-QUINCY DATA CENTER

PROPOSAL

Proposal Date: Wednesday, December 08, 2010

Quotation Number: 10120805RW-E Revision

Customer Contact: John Ford

Title: Director of Technology Real Estate

Email: johnf@sabey.com Phone: 206-277-5209

Cell:

Company Name: Sabey Corporation

Address: 12201 Tukwila International Blvd.

Seattle, WA 98168

Project Description

Sabey Construction - CAT 3516C 2000

ekW Generator

Address:

Product Quoted:

E-POD with ENDURE SCR & ASSURE DOC or PERMIT Filter units in a 304L Stainless Steel Double Wall Insulated Critical Grade Silencer

Purchase Order Date:

Requested Installation Date:

Engine Specifications	s:	CAT						
	Engine Model:	3516C			Eng	ine S/N:		
	EPA Tier Level:	Tier 2			EPA F	amily #:		
	Engine Displacement:	69	liters	Engine	Specifi	cation #: [DM8263	
	Fuel Type:	ULSD (<50 PPM)	Eng	jine Mod	del Year: 2	2010	
	Required Fuel Content:	<50	ppm	Sulfur				
	Generator Power Rating:	2,000	ekW	Standby	ß	/lodel #:		
	Average Running Load:		Runtime:		hours	/year		
	Engine Power Output:	2,937	bhp or	2188	bkW	@	1,800	RPM
	Exhaust Flow Rate:	15,136	ACFM					
	Exhaust Stack Temp:	762	deg F					
	Maximum Exhaust Pressure:	27	inches H₂O					

Emissions Specifications:			
Engine Emissions:	Certified		
NOx	: 3.93 g/bhp-hr		
CO	: 0.49 g/bhp-hr		
HC	: 0.25 g/bhp-hr		
PM	: 0.08 g/bhp-hr		
Emissions Reduction Required:	Tier 4 Final Levels	% Reduction	
NOx	: 0,50 g/bhp-hr	87.3%	
co	2.60 g/bhp-hr		
HC	: 0.14 g/bhp-hr	44.0%	
PM	0.02 g/bhp-hr	75.6%	Tier 4 Interim PM Level is 0.075 g/bhp-hr
Emissions Post After Treatment:	Estimated	% Reduction	
NOx	0.39 g/bhp-hr	90.0%	
co:	0.05 g/bhp-hr	90.0%	
HC:	0.03 g/bhp-hr	90.0%	
PM with ASSURE DOC Units:	0.07 g/bhp-hr	20.0%	Meets Tier 4 Interim w/ASSURE DOCs
PM with PERMIT Filter Units:	0.01 g/bhp-hr	85.0%	Meets Tier 4 Final w/PERMIT Filters

ENDURE SCR Specifications:

NOx Reduction:

90%

Material:

Zeolite based

Temperature Range:

550 to 1,025 deg. F

ENDURE SCR Catalyst Part Number:

EAA060612A

Total Amount of Catalyst:

44 cubic feet

Number of Catalyst Layers:

Ammonia Slip:

3 layers @ 64 blocks/layer

SCR Pressure Drop:

3.4 inches H₂O as configured at rated load

Estimated Reductant Consumption:

5.1 gal/hr of 32.5% Technical Urea

liters/hr of

32.5% Technical Urea

@ rated load @ rated load

Estimated Reductant Consumption:

19.1

Catalyst Life Expectancy: 20,000

ppm <10 hours

E-POD Control System: Integrated within the Dosing Cabinet

*Touch Screen Display & Dual NOx Sensors for a True Closed-Loop System

*Controller, Pressure Sensor, Temperature Sensor

*Power requirement: 240/120 volts AC, 10/20 amps, 50/60 Hertz

*Records NOx levels pre and post, Temperature and Pressure, Time and Date

Dosing Cabinet: Included

*Housed in a NEMA 4 enclosure (30" tall by 24" wide by 12" deep)

*Auto Start, Stop and Purge Cycle

*Dosing Pump

*Pressure Regulator

*Secondary Urea / Aqua Ammonia Filter

Tube Bundle: Included

*1/4" Heat Traced Stainless Steel tubing for Urea Flow

*1/2" Stainless Steel tubing for Compressed Air

*Signal Wires from Dosing Cabinet to E-POD

Injection and Mixing Section: Integrated within the E-POD housing

Type of Injector: Air/Liquid Lance with Urea

Compressed Air Required: Yes, 10 SCFM @ 100 PSIG with refrigerated dryer / oil-free

Mixer: Static

Reductant Supply: Not Included

Reductant Supply Pump: Not Provided & May not be necessary if gravity fed

Urea Heat Tracing: Not Provided before the Dosing Cabinet

Storage Tanks: Customer Supplied Reducing Agent: Customer Supplied

*The customer will supply the necessary tanks, plumbing safety equipment, monitoring devices, permitting and all parts and expenses to contain the selected reducing agent and supply the required amount to the Reducing Agent Injection System,

ASSURE DOC Specifications: Option 1 Material: Catalyzed Cordierite Ceramic substrates PM Reduction: ~20% @ steady state CO Reduction: 90% HC(VOC) Reduction: 90% ASSURE DOC Part Number: CBH1250B Amount of Catalyst: 4.3 cubic ft. 10 DOC units Catalyst Pressure Drop: 5.1 inches H2O as configured at rated load

> Regeneration: Not required

PERMIT Filter Specifications: Option 2 Material: Catalyzed Cordierite Ceramic wall-flow filter substrates CARB Level 3+ verified for greater than 85% PM Reduction: 85% CO Reduction: 90% HC(VOC) Reduction: 90% PERMIT Filter Part Number: FDA221 Number of Filters: 10 Filter Pressure Drop: inches H2O as configured at rated load Above 350 deg C (662 deg F) for 30% of the engine operating time and greater Regeneration using ULSD: than 40% engine load Maximum Number of Stationary Cold Starts: 12 consecutive 10 minute idle sessions followed by 2 hrs regeneration Typical Cleaning Interval: 2,500 hours Catalyst Life Expectancy: 10,000 hours

Silencer Housing Specifications: 09093003AE

> Material: 304L Stainless Steel

Construction: Double Wall, Rigid, & Light Weight

Insulation: 2" Between two Stainless Steel Walls

Approximate Dimensions (inches): 172 " Length " Width 58

> Estimated Weight: 9,000 pounds 4,090 kilograms

Sound Reduction: 27-35 dBa, Critical Grade Silencing

Total System Pressure Drop Silencer+SCR+DOC: 13.5 inches H₂O as configured at rated load Total System Pressure Drop Silencer+SCR+DPF: inches H₂O as configured at rated load 17.7

> 20 Inlet Size: inches Flange **Outlet Size:** 20 inches Flange

*The E-POD Silencer Housing is designed to accommodate the ENDURE SCR and either the ASSURE DOC or the PERMIT Filter systems. If not initially purchased, any of these products can be installed at a future date.

" Height

This System Includes:

ENDURE SCR Catalyst Yes

ASSURE DOC Option 1 Meets Tier 4 Interim

PERMIT DPF Option 2 Meets Tier 4 Final

SILENCER - Stainless Steel Yes

INTERNAL Mixing and Reductant Injection Yes

E-POD Controller Yes *Closed-Loop System

Operation & Maintenance Manual Yes

Start-up Commissioning Yes

This System Excludes:

Delivery/Freight Expenses

Consumables and Utilities (chemicals, water, electricity, etc.)

Reductant tanks, plumbing, supply pumps, etc.

Installation and supply of interconnecting power, control cables, and conduit

Installation of the E-POD System

Exhaust piping insulation (CleanAIR Systems recommends insulating the exhaust from the engine to the inlet of the filter)

All necessary permitting

Terms & Conditions: FOB Santa Fe

Shipping Date: 20 weeks from

20 weeks from date of purchase order and approved design

Terms: Net 30 Days

Proposal Valid: 30 days from proposal date

Warranty: 2 year or 8,000 hours of operation from commissioning

Notes:			

Pricing:

	Option 1	*Closed-Loop System Meets Tier 4 Interim &	Upgradeab	le to Tier 4 F	inal	
	Part Number	Description	Quantity	Unit Price		Total (USD)
1	09093003AE	E-POD w/ ENDURE SCR & ASSURE DOC in a 304L Stainless Steel Double Wall Insulated Critical Grade Silencer	3	\$124,915.00		\$374,745.00
2		Atlas Copco SF-4 Air Compressor (typically 460 Volt/ 3 phase, call for options)	3	\$10,450.00		\$31,350.00
3					\$	-
4					\$	
5					\$	-
6					\$	
7	SCEPD090121	Commissioning / technician / day (2 days on site)* Please allow 6 weeks to schedule Commissioning	3	\$3,025.00	\$	49,075.00
8			Handli	ing/Skidding:	\$	4,060.00
9		-	Estim	ated Freight:		
				Total:		\$459,230.00

(Option 2	*Closed-Loop System Meets Tier 4 Final	Overality	I I all Malan	T
_	Part Number	Description	Quantity	Unit Price	Total (USD)
1	09093003AE	E-POD w/ ENDURE SCR & PERMIT Filter in a 304L Stainless Steel Double Wall Insulated Critical Grade Silencer	3	\$197,658.00	\$592,975.00
2		Atlas Copco SF-4 Air Compressor (typically 460 Volt/ 3 phase, call for options)	3	\$10,450.00	\$31,350.00
3					\$
4					\$
5		_			\$
6					\$
7	SCEPD090121	Commissioning / technician / day (2 days on site)* Please allow 6 weeks to schedule Commissioning	3	\$3,025.00	\$9,075.00
8			Handli	ing/Skidding:	\$6,245.00
9			Estim	ated Freight:	
			<u> </u>	Total:	\$639,645.00

	Part Number	Description	Quantity	Unit Price	Total (USD)
1	09022405AG	Replacement NOx Sensors (replace every 8,000 hours)	6	\$2,420.00	\$14,520.00
2		ModBus Controller Software upgrade	3	\$1,265.00	\$3,795.00
3		Injector Nozzle Kit	3	\$396.00	\$1,188.00
4		Replacement set of ENDURE SCR Catalyst (20,000 hrs)	3	\$27,346.00	\$82,038.00
5		Replacement set of PERMIT Filter Elements (10,000 hrs)	3	\$89,595.00	\$268,785.00
6		Replacement set of ASSURE DOC Elements (10,000 hrs)	3	\$16,850	\$50,552.00
7		Custom Insulating Blanket for Exhaust Piping	3	TBD	#VALUE!

^{*}Commissioning exceeding 2 days will be charged a flat rate of \$1,150 per day per technician.

Handling/Skidding: 1% of the total order will be charged to prepare the unit for shipping with a \$10 minimum for orders under \$100, \$20 minimum for orders \$1,001 to \$3,000.

Order Cancellations: Standard Parts - A flat 20% fee will be charged on canceled orders for standard parts.

Custom Parts - Customer will incur all expenses at the time of order cancellation including; materials, engineering & labor plus 20%.

Contact Information: N C Power Systems

Don Lee King Power Generation Sales 425-656-4586

DLKing@ncpowersystems.com

For additional information, visit:

					FD (60) D	CT4.DT 4.D.II	ICTED\ 514	ISSIGN D	TEC FOR RACT	A B.I A I V.C.I.C.		
					·		JSTED) EM	ISSION RA	ATES FOR BACT	ANALYSIS		
able X No	minal-Controlle	ed Cold-St	art NOX Emis	sions Account	ing for 3WC [,			SCR STEADY-STATE	REMOVAL EF	FICIENCIE	S
Load	Uncon.trolled	Minutes SCR Delay	Guaranteed Effcy (%)	Nominal Controlled CO, lbs/hr	Minutes Full SCR Control				Pollutant	Removal Effct (%)		
10%	6.0	20	90%	0.60	40	2.40	60%		Nox	90%		
81.3%	37.2	10	90%	3.72	50	9.29	75%		PM (FH+BH)	20%		
90%	43.6	10	90%	4.36	50	10.89	75%		CO	90%		
93.3%	46.1	10	90%	4.61	50	11.53	75% 75%		voc	90%		
									VUC	90%		
100%	51.5	10	90%	5.15	50	12.88	75%					
ahle V Nic	minal-Controll	ad (Cold S	tart Adiusted)	DM Emission	Rates (Include	es FH+BH Fact	or)		Total EU Adination	at Factors		
avie A INO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	o (colu-s	tari Aujusteu)	1 IVI LIIIISSIUII	rates (IIICIUO	- I I TON FACI	.oi <i>)</i>		Total:FH Adjustmen	IL FACIOTS		
	Nominal Uncontrolled Front-Half Only Emiss	Total PM to Front Half PM	Total PM Emiss Rate	Guaranteed	Nominal Contr Total	Cold Start	Total PM,			StacktestTot		Total PM to Fro
lec Load	Rate (lbs/hr)	Ratio	(lbs/hr)	Effcy (%)	PM (lbs/hr)	Factor	lbs/hr		Load	PM	Only PM	Half PM Rat
10%	0.43	3.38	1.45	20%	1.161	1.058	1.228		80%-90%			3.
81.3%	0.83	3.08	2.55	20%	2.042	1.058	2.160		100%	0.36	0.12	3.
90%	0.95	3.08	2.92	20%	2.337	1.058	2.473		50%	0.27	0.08	3.
93.3%	0.99	3.08	3.04	20%	2.435	1.058	2.577					
100%	1.08	3.00	3.24	20%	2.592	1.058	2.742					
	<u> </u>											
able Y. No	ominal-Controll	ed Cold-S	tart CO Emiss	ions Accountii	ng for DOC De	lay Time						
Load	Nominal Uncontrolled Rate, lbs/hr	Minutes DOC Delay	Guaranteed Effcy (%)	Nominal Controlled CO, lbs/hr	Minutes Full DOC Control	Wt. Average 1- Hour CO Emission, lbs/hr	Cold Start Factor	Nonimal Controlled CO, lbs/hr	Overall Cold Start % CO Removal			
10%	2.8	20	90%	0.28	40	1.12	1.058	1.18	60%			
81.3%	5.3	10	90%	0.53	50	1.33	1.058	1.40	75%			
90%	6.0	10	90%	0.60	50	1.50	1.058	1.59	75%			
93.3%	6.3	10	90%	0.63	50	1.58	1.058	1.67	75%			
100%	6.8	10	90%	0.68	50	1.70	1.058	1.80	75%			
				cione Accoun	ting for DOC E	Delay Time						
able Y. No	ominal-Controll	ed Cold-S	tart VOC Emis	SSIONS ACCOUNT								
able Y. No	Nominal Uncontrolled	Minutes DOC Delay	Guaranteed Effcy (%)	Nominal Controlled VOC, lbs/hr	Minutes Full DOC Control	Wtd Average 1-Hour Emission, Ibs/hr	Cold Start Factor	Nominal Controlled VOC, lbs/hr	Overall Cold Start % Removal			
	Nominal Uncontrolled	Minutes DOC	Guaranteed	Nominal Controlled		1-Hour Emission,		Controlled				
Load	Nominal Uncontrolled Rate, lbs/hr	Minutes DOC Delay	Guaranteed Effcy (%) 90%	Nominal Controlled VOC, lbs/hr	DOC Control	1-Hour Emission, Ibs/hr	Factor 1.058	Controlled VOC, lbs/hr 0.52	% Removal			
Load 10% 81.3%	Nominal Uncontrolled Rate, lbs/hr	Minutes DOC Delay 20	Guaranteed Effcy (%) 90%	Nominal Controlled VOC, lbs/hr 0.12	DOC Control 40	1-Hour Emission, Ibs/hr 0.49	1.058	Controlled VOC, lbs/hr 0.52	% Removal 60% 75%			
Load 10% 81.3% 90%	Nominal Uncontrolled Rate, lbs/hr 1.2 1.1	Minutes DOC Delay 20 10	Guaranteed Effcy (%) 90% 90% 90%	Nominal Controlled VOC, lbs/hr 0.12 0.11	40 50 50	1-Hour Emission, Ibs/hr 0.49 0.28	1.058 1.058 1.058	Controlled VOC, lbs/hr 0.52 0.29	% Removal 60% 75% 75%			
Load 10% 81.3%	Nominal Uncontrolled Rate, lbs/hr 1.2 1.1	Minutes DOC Delay 20	Guaranteed Effcy (%) 90%	Nominal Controlled VOC, lbs/hr 0.12	DOC Control 40	1-Hour Emission, Ibs/hr 0.49 0.28 0.28	1.058	Controlled VOC, lbs/hr 0.52	% Removal 60% 75%			

							Но	urs at Ea	ch Runt	ime Mo	de												
											Outage			Each	Each	Each	Facility	Facility-	Facility	Each		Each	Facility-
										De-En	or			Genset	Genset	Genset	Wide	Wide	Wide	Genset	Facility-	Genset	Wide
	Gen	Elec	No.						Correct	Bldg	Storm		Total	DPM	Fuel	NOX	Total PM	Fuel	NOX	СО	Wide CO	HC	voc
Gen#	Area	Load	Gens	W	М	Q	A-F	A-Step	Tests	Maint	Avoid	Cool	hrs/yr	lbs/hr	Gal/Hr	lbs/hr	Tons/yr	Gal/Year	Tons/yr	lbs/hr	Tons/Yr	lbs/hr	Tons/Yr
Jnplanned Outage + S	torm Avoida	nce					Unplai	nned Outa	ge + Storm	Avoidand	e	•											
1-1 to 1-5	Bldg 1	81%	5								24		24	2.16	195	9.3	0.130	23,400	0.56	1.40	0.08	0.29	0.0
2-1 to 2-3	Bldg 2	90%	3								24		24	2.47	213	10.89	0.089	15,336	0.39	1.59	0.06	0.29	0.0:
3-1 to 3-3	Bldg 3	90%	3								24		24	2.47	213	10.89	0.089	15,336	0.39	1.59	0.06	0.29	0.0
ETC-1	ETC	93%	1								24		24	2.58	220	11.53	0.031	5,280	0.14	1.67	0.02	0.29	0.0
esting at Full Outa	ge Loads						T	esting at F	ıll Outage	Loads													
1-1 to 1-5	Bldg 1	81%	5			3	6			8			17	2.16	195	9.3	0.092	16,575	0.39	1.40	0.06	0.29	0.0
2-1 to 2-3	Bldg 2	90%	3			3	6			8			17	2.47	213	10.89	0.063	10,863	0.28	1.59	0.04	0.29	0.00
3-1 to 3-3	Bldg 3	90%	3			3	6			8			17	2.47	213	10.89	0.063	10,863	0.28	1.59	0.04	0.29	0.00
ETC-1	ETC	93%	1			3	6			8			17	2.58	220	11.53	0.022	3,740	0.10	1.67	0.01	0.29	0.0
100% Load									t 100% Lo	ad													
1-1 to 1-5	Bldg 1	100%	5					0.5	8				8.5	2.74	232	12.88	0.058	9,860	0.27	1.80	0.04		
2-1 to 2-3	Bldg 2	100%	3					0.5	8				8.5	2.74	232	12.88	0.035	5,916	0.16	1.80	0.02		
3-1 to 3-3	Bldg 3	100%	3					0.5	8				8.5	2.74	232	12.88	0.035	5,916	0.16	1.80	0.02	_	
ETC-1	ETC	100%	1					0.5	8				8.5	2.74	232	12.88	0.012	1,972	0.05	1.80	0.01	-	
1-6 and 1-7 Reserve	Bldg 1	100%	1					0.5	8				8.5	2.74	232	12.88	0.023	3,944	0.11	1.80	0.02		
2-4 Reserve	Bldg 2	100%	1					0.5	8				8.5	2.74 2.74	232 232	12.88 12.88	0.012 0.012	1,972 1,972	0.05 0.05	1.80 1.80	0.01 0.01		
3-4 Reserve ETC-2 Reserve	Bldg 3 ETC	100%	1					0.5 0.5	8				8.5 8.5	2.74	232	12.88	0.012	1,972	0.05	1.80	0.01		
ETC 2 RESERVE	EIC	100%	1					0.5	8				8.5	2.74	232	12.00	0.012	1,372	0.03	1.00	0.01	0.23	0.00
-II - /+ + - 400/ f																							
dle (set to 10% for	21111331011								د الد														
calculations)		100/	-	20	I .	I .	0		ldle	I .	0	0.5	25.5	1 22	AE.	2.40	0.100	7.000	0.21	1 10	0.11	0.53	0.04
talculations)	Bldg 1	10%	5	20	6	0	0	0	0	0	0	9.5	35.5	1.23	45	2.40	0.109	7,988	0.21	1.18	0.11		
1-1 to 1-5 2-1 to 2-3	Bldg 1 Bldg 2	10%	5 3	20	6	0	0	0	0	0	0	9.5	35.5	1.23	45	2.40	0.065	4,793	0.13	1.18	0.06	0.52	0.02
2-1 to 2-3 3-1 to 3-3	Bldg 1 Bldg 2 Bldg 3	10% 10%	5 3 3	20 20	6	0	0	0 0 0	0 0 0	0	0	9.5 9.5	35.5 35.5	1.23 1.23	45 45	2.40 2.40	0.065 0.065	4,793 4,793	0.13 0.13	1.18 1.18	0.06 0.06	0.52 0.52	0.02
1-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1	Bldg 1 Bldg 2 Bldg 3 ETC	10% 10% 10%	5 3 3 1	20 20 20	6 6 6	0 0	0 0	0	0	0 0 0	0 0	9.5 9.5 9.5	35.5 35.5 35.5	1.23 1.23 1.23	45 45 45	2.40 2.40 2.40	0.065 0.065 0.022	4,793 4,793 1,598	0.13 0.13 0.04	1.18 1.18 1.18	0.06 0.06 0.02	0.52 0.52 0.52	0.02 0.02 0.00
2-1 to 2-3 3-1 to 3-3	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1	10% 10% 10% 10%	5 3 3 1 2	20 20 20 20	6 6 6	0	0 0 0 6	0 0 0	0 0 0	0	0 0 0 24	9.5 9.5 9.5 1.5	35.5 35.5 35.5 68.5	1.23 1.23	45 45	2.40 2.40	0.065 0.065 0.022 0.084	4,793 4,793	0.13 0.13 0.04 0.16	1.18 1.18 1.18 1.18	0.06 0.06 0.02 0.08	0.52 0.52 0.52 0.52	0.02 0.02 0.00 0.03
2-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2	10% 10% 10%	5 3 3 1 2 1	20 20 20	6 6 6	0 0 0 3	0 0	0 0 0	0 0 0	0 0 0 8	0 0	9.5 9.5 9.5	35.5 35.5 35.5	1.23 1.23 1.23 1.23	45 45 45 45	2.40 2.40 2.40 2.40	0.065 0.065 0.022	4,793 4,793 1,598 6,165	0.13 0.13 0.04	1.18 1.18 1.18	0.06 0.06 0.02	0.52 0.52 0.52 0.52 0.52	0.02 0.02 0.00 0.00 0.03
2-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve 2-4 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2 Bldg 3	10% 10% 10% 10% 10% 10%	5 3 3 1 2 1 1	20 20 20 20 20 20	6 6 6 6 6	0 0 0 3 3	0 0 0 6 6	0 0 0	0 0 0	0 0 0 8 8 8	0 0 0 24 24 24	9.5 9.5 9.5 1.5 1.5	35.5 35.5 35.5 68.5 68.5	1.23 1.23 1.23 1.23 1.23	45 45 45 45 45 45	2.40 2.40 2.40 2.40 2.40	0.065 0.065 0.022 0.084 0.042 0.042	4,793 4,793 1,598 6,165 3,083 3,083	0.13 0.13 0.04 0.16 0.08	1.18 1.18 1.18 1.18 1.18 1.18	0.06 0.06 0.02 0.08 0.04	0.52 0.52 0.52 0.52 0.52 0.52	0.02 0.02 0.00 0.00 0.03 0.01
1-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve 2-4 Reserve 3-4 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2	10% 10% 10% 10% 10%	3 3 1 2 1	20 20 20 20 20	6 6 6 6	0 0 0 3 3 3	0 0 0 6 6	0 0 0	0 0 0	0 0 0 8 8	0 0 0 24 24	9.5 9.5 9.5 1.5	35.5 35.5 35.5 68.5 68.5 68.5	1.23 1.23 1.23 1.23 1.23 1.23	45 45 45 45 45	2.40 2.40 2.40 2.40 2.40 2.40	0.065 0.065 0.022 0.084 0.042	4,793 4,793 1,598 6,165 3,083	0.13 0.13 0.04 0.16 0.08	1.18 1.18 1.18 1.18 1.18	0.06 0.06 0.02 0.08 0.04	0.52 0.52 0.52 0.52 0.52 0.52	0.02 0.02 0.00 0.00 0.03 0.01
1-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve 2-4 Reserve 3-4 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2 Bldg 3	10% 10% 10% 10% 10% 10%	3 3 1 2 1	20 20 20 20 20 20	6 6 6 6 6	0 0 0 3 3 3	0 0 0 6 6	0 0 0	0 0 0	0 0 0 8 8 8	0 0 0 24 24 24	9.5 9.5 9.5 1.5 1.5	35.5 35.5 35.5 68.5 68.5 68.5	1.23 1.23 1.23 1.23 1.23 1.23	45 45 45 45 45 45	2.40 2.40 2.40 2.40 2.40 2.40	0.065 0.065 0.022 0.084 0.042 0.042	4,793 4,793 1,598 6,165 3,083 3,083	0.13 0.13 0.04 0.16 0.08	1.18 1.18 1.18 1.18 1.18 1.18	0.06 0.06 0.02 0.08 0.04	0.52 0.52 0.52 0.52 0.52 0.52	0.02 0.02 0.00 0.00 0.03 0.01
1-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve 2-4 Reserve 3-4 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2 Bldg 3	10% 10% 10% 10% 10% 10%	3 3 1 2 1	20 20 20 20 20 20	6 6 6 6 6	0 0 0 3 3 3	0 0 0 6 6	0 0 0	0 0 0	0 0 0 8 8 8	0 0 0 24 24 24	9.5 9.5 9.5 1.5 1.5	35.5 35.5 35.5 68.5 68.5 68.5	1.23 1.23 1.23 1.23 1.23 1.23	45 45 45 45 45 45	2.40 2.40 2.40 2.40 2.40 2.40	0.065 0.065 0.022 0.084 0.042 0.042	4,793 4,793 1,598 6,165 3,083 3,083	0.13 0.13 0.04 0.16 0.08 0.08	1.18 1.18 1.18 1.18 1.18 1.18	0.06 0.02 0.08 0.04 0.04	0.52 0.52 0.52 0.52 0.52 0.52	0.02 0.02 0.00 0.03 0.01 0.01
1-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve 2-4 Reserve 3-4 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2 Bldg 3	10% 10% 10% 10% 10% 10%	3 3 1 2 1	20 20 20 20 20 20	6 6 6 6 6	0 0 0 3 3 3	0 0 0 6 6	0 0 0	0 0 0	0 0 0 8 8 8	0 0 0 24 24 24	9.5 9.5 9.5 1.5 1.5	35.5 35.5 35.5 68.5 68.5 68.5	1.23 1.23 1.23 1.23 1.23 1.23	45 45 45 45 45 45 45	2.40 2.40 2.40 2.40 2.40 2.40 2.40	0.065 0.065 0.022 0.084 0.042 0.042	4,793 4,793 1,598 6,165 3,083 3,083	0.13 0.13 0.04 0.16 0.08	1.18 1.18 1.18 1.18 1.18 1.18	0.06 0.06 0.02 0.08 0.04	0.52 0.52 0.52 0.52 0.52 0.52	0.02 0.02 0.00 0.00 0.03 0.01
1-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve 2-4 Reserve 3-4 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2 Bldg 3	10% 10% 10% 10% 10% 10%	3 3 1 2 1	20 20 20 20 20 20	6 6 6 6 6	0 0 0 3 3 3	0 0 0 6 6	0 0 0	0 0 0	0 0 0 8 8 8	0 0 0 24 24 24	9.5 9.5 9.5 1.5 1.5	35.5 35.5 35.5 68.5 68.5 68.5	1.23 1.23 1.23 1.23 1.23 1.23	45 45 45 45 45 45 45	2.40 2.40 2.40 2.40 2.40 2.40 2.40	0.065 0.065 0.022 0.084 0.042 0.042 0.042	4,793 4,793 1,598 6,165 3,083 3,083 3,083	0.13 0.13 0.04 0.16 0.08 0.08 0.08	1.18 1.18 1.18 1.18 1.18 1.18	0.06 0.06 0.02 0.08 0.04 0.04	0.52 0.52 0.52 0.52 0.52 0.52	0.02 0.00 0.00 0.01 0.01
1-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve 2-4 Reserve 3-4 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2 Bldg 3	10% 10% 10% 10% 10% 10%	3 3 1 2 1	20 20 20 20 20 20	6 6 6 6 6	0 0 0 3 3 3	0 0 0 6 6	0 0 0	0 0 0	0 0 0 8 8 8	0 0 0 24 24 24	9.5 9.5 9.5 1.5 1.5	35.5 35.5 35.5 68.5 68.5 68.5	1.23 1.23 1.23 1.23 1.23 1.23	45 45 45 45 45 45 45 45 WTROLLEC	2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.60 2.40	0.065 0.065 0.022 0.084 0.042 0.042	4,793 4,793 1,598 6,165 3,083 3,083 3,083	0.13 0.13 0.04 0.16 0.08 0.08	1.18 1.18 1.18 1.18 1.18 1.18	0.06 0.02 0.08 0.04 0.04	0.52 0.52 0.52 0.52 0.52 0.52	0.02 0.002 0.003 0.003 0.003 0.003
1-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve 2-4 Reserve 3-4 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2 Bldg 3	10% 10% 10% 10% 10% 10%	3 3 1 2 1	20 20 20 20 20 20	6 6 6 6 6	0 0 0 3 3 3	0 0 0 6 6	0 0 0	0 0 0	0 0 0 8 8 8	0 0 0 24 24 24	9.5 9.5 9.5 1.5 1.5	35.5 35.5 35.5 68.5 68.5 68.5	1.23 1.23 1.23 1.23 1.23 1.23	45 45 45 45 45 45 45 VTROLLEC Wide	2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.60 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.7	0.065 0.065 0.022 0.084 0.042 0.042 Total PM	4,793 4,793 1,598 6,165 3,083 3,083 3,083	0.13 0.04 0.16 0.08 0.08 0.08 0.08	1.18 1.18 1.18 1.18 1.18 1.18	0.06 0.06 0.02 0.08 0.04 0.04 0.04	0.52 0.52 0.52 0.53 0.53 0.52	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
1-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve 2-4 Reserve 3-4 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2 Bldg 3	10% 10% 10% 10% 10% 10%	3 3 1 2 1	20 20 20 20 20 20	6 6 6 6 6	0 0 0 3 3 3	0 0 0 6 6	0 0 0	0 0 0	0 0 0 8 8 8	0 0 0 24 24 24	9.5 9.5 9.5 1.5 1.5	35.5 35.5 35.5 68.5 68.5 68.5	1.23 1.23 1.23 1.23 1.23 1.23	45 45 45 45 45 45 45 45 VTROLLEL Wide NTROLLEL	2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.6	0.065 0.065 0.022 0.084 0.042 0.042 0.042 Total PM 1.248	4,793 4,793 1,598 6,165 3,083 3,083 3,083	0.13 0.13 0.04 0.16 0.08 0.08 0.08 0.08	1.18 1.18 1.18 1.18 1.18 1.18	0.06 0.06 0.02 0.08 0.04 0.04 0.04 0.04	0.52 0.52 0.52 0.52 0.52 0.52	0.02 0.02 0.00 0.00 0.03 0.03 0.03 0.03
1-1 to 1-5 2-1 to 2-3 3-1 to 3-3 ETC-1 1-6 and 1-7 Reserve 2-4 Reserve 3-4 Reserve	Bldg 1 Bldg 2 Bldg 3 ETC Bldg 1 Bldg 2 Bldg 3	10% 10% 10% 10% 10% 10%	3 3 1 2 1	20 20 20 20 20 20	6 6 6 6 6	0 0 0 3 3 3	0 0 0 6 6	0 0 0	0 0 0	0 0 0 8 8 8	0 0 0 24 24 24	9.5 9.5 9.5 1.5 1.5	35.5 35.5 35.5 68.5 68.5 68.5	1.23 1.23 1.23 1.23 1.23 1.23 1.23	45 45 45 45 45 45 45 VTROLLEL Wide NTROLLEL Wide Tons/Yr	2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.60 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.7	0.065 0.065 0.022 0.084 0.042 0.042 Total PM	4,793 4,793 1,598 6,165 3,083 3,083 3,083	0.13 0.04 0.16 0.08 0.08 0.08 0.08	1.18 1.18 1.18 1.18 1.18 1.18	0.06 0.06 0.02 0.08 0.04 0.04 0.04	0.522 0.52 0.52 0.52 0.52 0.52	0.02 0.02 0.03 0.03 0.01 0.01

Vantage Data Center					
Cost Category	Cost Factor	Source of Cost Factor	Quant.	Unit Cost	Subtotal Cos
		•		•	
Direct Costs					
Purchased Equipment Costs					
FOB purchase price for Sabey Data Cer	<u> </u>	•	•	e's 3,000 kW	e generators
was scaled using the "0.6 rule: Cost for					
Vantage 3000 kWe FOB Purchase Price			17	\$195,000	\$3,315,000
Instrumentation	Assume no cost	Assume no cost	0	0	(
Sales Tax	WA state tax	WA state tax	6.5%		\$215,475
Shipping	0.05A	EPA Cost Manual	5.0%		\$165,750
Subtotal Purchased Equipment Cost, PEC					\$3,696,225
Direct Installation Costs					
Enclosure structural supports	From MSFT CO-3	Robinson Enclosures	0	\$9,812	\$(
Installation	EPA Cost Manual	EPA Cost Manual	5.0%		\$184,81
Electrical	Assume no cost	Assume no cost	0	0	(
Piping	Assume no cost	Assume no cost	0	0	(
Insulation	Assume no cost	Assume no cost	0	0	(
Painting	Assume no cost	Assume no cost	0	0	(
Subtotal Direct Installation Costs		•			\$184,811
Site Preparation and Buildings (SP)	Assume no cost	Assume no cost	0	0	(
		<u> </u>			
Total Direct Costs, DC (PEC + Direct Insta	llation + Site Prep)				\$3,881,036
·					
ndirect Costs (Installation)					
Engineering	0.025*PEC	1/4 of EPA Cost Manual	2.5%		\$92,406
Construction and field expenses	0.025*PEC	1/2 of EPA Cost Manual	2.5%		\$92,406
Contractor Fees	From DIS data center	From DIS data center	6.8%		\$269,578
Startup	0.02*PEC	EPA Cost Manual	2.0%		\$73,925
Performance Test (Tech support)	0.01*PEC	EPA Cost Manual	1.0%		\$36,962
Contingencies	0.03*PEC	EPA Cost Manual	3.0%		\$110,887
Subtotal Indirect Costs, IC					\$676,163
	1	,			+,
Total Capital Investment (TCI = DC+IC)					\$4,557,199
· · · · · · · · · · · · · · · · · · ·					
					TCI per ger

Item	Quantity	Units	Unit cost	Subtotal					
	Annualized C	Capital Recovery							
Total Capital Cost		-		\$4,557,199		TCI/gen		\$268,071	
Capital Recovery Factor	, 25 yrs, 4% discount rate			0.06401					
Subtotal Annualized 25-	year Capital Recovery Cost			\$291,706					
		nnual Costs							
Annual Admin charges		l (EPA Manual)	0.02	\$91,144					
Annual Property tax		l (EPA Manual)	0.01	\$45,572					
Annual Insurance	1% of TC	l (EPA Manual)	0.01	\$45,572					
For this screening-level a	analysis we assumed the low	er-bound annual O&M c	ost of zero.	\$0					
Subtotal Direct Annual	Costs			\$182,288	Combined Pollutants Removal Toni	nages (Nominal	-Controlled)		
Total Annual Cost (Ca	pital Recovery + Direct Ani	nual Costs)		\$473,994	Pollutant	PM (FH+BH)	CO	VOC	NOX
Uncontrolled emissior	s (Combined Pollutants)			21.7	Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1
Assumed Control Effic	ciency			Varies	Nominal Cold-Start Controlled TPY	1.248	0.958	0.293	4.38
Annual Tons Remove	d (Combined Pollutants)			14.84	Tons Removed/Year	0.31	2.19	0.578	11.8
Cost Effectiveness (\$ p	er tons combined pollutan	nt destroyed)		\$31,935	Overall Cold-Start Removal Effcy	20%	70%	66%	73%
					Indiv Poll \$/Ton Removed	\$1,518,616	\$216,240	\$820,331	\$40,30
Multi-PollutantCost-Ff	ectiveness for "Reasonable	e Control Cost" vs. Ac	tual Control	Cost					
man i ondiamoosi En	Ecology Acceptable Unit Cost	Forecast Removal		cceptable Annual					
Pollutant	(\$/ton)	(tons/yr)		st (\$/year)					
NOX	\$10,000	11.76		per year					
CO	\$5,000	2.19		per year					
VOC	\$9,999	0.58	. ,	per year					
PM (FH+BH)	\$23,200	0.31		per year					
	Annual Control Cost for Cor			per year					
	ctual Annual Control Cost			per year					
Is The	Control Device Reasonal	ole?	NO (Actua	l >> Acceptable)					

ATTACHMENT E 3-WAY CATALYST BACT ASSESSMENT

3-WAY CATALYST PERMITTED FOR TITAN DATA CENTER

Clean Emissions Products Inc. Exhaust Purifier

Part Number FL-35-20ASA 3-WAY x 2

Basic Catalyst & Housing Composition

- Stainless Steel Foil (Substrate Core)
- Stainless Steel 14 Gauge, Grade 304 (Housing) containing 2 x 35" dia x 3.5" thick 3-way catalysts
- Weight = approx.. 140lbs.
- Dimensions = 35" diameter x 22" total length (approx.) 20" ASA Flanges
- 320 CPSI
- Pressure drop across catalyst = < 3.9" w.c.

Effectiveness in Reducing Exhaust Emissions

- CO (Carbon Monoxide) up to 99%
- HC (Hydrocarbons & Odor) up to 90%
- Acrolein up to 90%
- DPM (Diesel Particulate Matter) up to 88%
- NOx Reduction35% guaranteed

Purchase Prices

2,000 kW generator: 35" Catalyst; \$56,000 2,500 kW generator: 35" Catalyst; \$56,000 Est. installation cost: \$6,500 each catalyst Note, these costs do not include indirect costs for shipping, taxes, site-specific engineering, or administrative costs.

Lifespan of Catalyst

- For standby generator sets: Maximum 500 hours per year (results in an average lifespan of 15 years).
- For peak shaving gen sets: Maximum 1500 hours per year (results in an average lifespan of 5 years).

Installation

- Installs primarily between the muffler and the engine manifold (can be installed directly behind the muffler in most applications).
- The catalyst can be installed either vertically, horizontally or right to left.

Maintenance

- Designed to be maintenance free. Once you install the catalyst on a regularly maintained engine you should not need to maintain the catalyst at all.
- If maintenance is required simply unbolt catalyst and blow out in opposite direction of exhaust flow with high pressure air or water (maximum 1600 psi recommended).

Operating Conditions for Successful Catalyst Use

-Exhaust Temperature must be at least 250° C (482° F) and not exceed 750° C (1382° F). The hotter the exhaust temperature that reaches the catalyst the higher the reduction levels of emissions you will experience.

P.O. Box 271 Midhurst, Ontario Canada LOL 1X0 **TO ORDER CALL**

Tel: (705) 739-2225 Fax: (705) 739-9216

Toll Free: 1-866-787-2473
Contact: Brian Cameron

P.O. Box 271 Midhurst, Ontario Canada LOL 1X0

TO ORDER CALL

Tel: (705) 739-2225 Fax: (705) 739-9216

Toll Free: 1-866-787-2473

Catalyst Reaction Process for P/N FL-35-20ASA-3W

Catalyst Physical Description:

Brazed stainless steel element using 300 CPSI, honeycomb cell pattern.

Catalyst Chemical Description:

NSCR (non-selective catalyst reduction) composed of a Cerium based washcoating with a combination of Platinum (Pt) and Rhodium (Rh) applied.

Exhaust Emission Reductions Targeted:

CO (carbon monoxide) = up to 99% HC (hydrocarbons) = up to 90% DPM (diesel particulate matter) = up to 88% NOx (oxides of nitrogen) = up to 35%

Catalyst Process Description:

With this particular catalyst there are two (2) chemical reactions taking place: **Oxidation** and **Reduction**. With the oxidation reaction oxygen (O_2) is being added to atoms to form oxide molecules. Carbon Monoxide (CO) has additional oxygen added to it to form less lethal carbon dioxide (CO₂). Hydrocarbons (HC) are fuel based molecules comprised of carbon and hydrogen atoms which are then oxidized to form CO_2 and simple water vapor (H₂O). The reduction reaction is one whereby we then remove excess oxygen from the exhaust molecules. NOx is made up of nitrogen (N) and oxygen atoms. When you remove the oxygen you end up with nitrogen gas (N₂).

When exhaust gases enter the catalyst the NOx, CO and HC molecules are attracted to the surface of the catalyst where they come into contact with the coating materials of Pt and Rh. Our NSCR catalyst washcoating contains a series of rare earth materials that working in concert with the Rh to have the ability to extract oxygen. This extracted oxygen is then donated to either CO or HC by the reaction with Pt coating.

As this application is a lean burn (diesel) engine we will use the Pt coating in combination with the Rh to remove as much excess oxygen from the exhaust stream (once CO and HC have taken their required molecules to form less lethal CO₂ and water vapor) and then the remaining oxygen deprived environment (stochiometric) can react with the Rh coating to facilitate NOx reduction (as the remaining exhaust environment will be a rich burn environment which is what is required for NOx reduction).

In addition we use a combination of exhaust backpressure and exhaust temperature to trap and breakdown particulate matter (DPM) which is composed of SOF (soluble organic fraction) and carbon (i.e. soot).

abla V. Na	minal-Controlle	4 Cal4 C4	art NOV Emis	niana Angarint	ing for 2\\/C	Nalay Time			2 14/41/ 04 74 11/07 0	TF4 DV 6T4TF	DE1401/4	
able A. No	minai-Controlle	a Cola-Si	art NOA Emis	SIONS ACCOUNT	ing ior 3VVC L	Nominal			3-WAY CATALYST S	TEADY-STATE	REMOVA	L EFFICIENCIES
						Controlled						
	Nominal	Minutes		Nominal		NOX	Overall Cold					
	Uncon.trolled	SCR Delay	Guaranteed	Controlled CO, lbs/hr	Minutes Full SCR Control		Start % NOX		Dellustenst	Removal		
Load	NOX, lbs/hr		Effcy (%)			lbs/hr	Removal		Pollutant	Effct (%)		
10% 81.3%	6.0 37.2	20 10	35% 35%	3.90 24.16	40 50	4.60 26.33	23% 29%		Nox	35% 88%		
90%		10	35%				29%		PM (FH+BH) CO	99%		
	43.6			28.32	50	30.86						
93.3%	46.1	10	35%	29.99	50	32.68	29%		VOC	90%		
100%	51.5	10	35%	33.48	50	36.48	29%					
able X. No	minal-Controlle	d (Cold-S	tart Adjusted)	PM Emission	Rates (Include	s FH+BH Fact	or)		Total:FH Adjustme	nt Factors		
	Nominal	Total	Nominal		(/		Total: TT7 tajastine	it i detois		
	Uncontrolled	PM to					Nominal					
	Front-Half	Front	Total PM		Nominal	Dell 1-Hour	Controlled			O. I. IT.	Stacktes	T
	Only Emiss Rate (lbs/hr)	Half PM Ratio	Emiss Rate	Guaranteed	Contr Total PM (lbs/hr)	Cold Start Factor	Total PM, lbs/hr			StacktestTot PM	t FH Only PM	Total PM to From Half PM Ration
lec Load	` ′		(lbs/hr)	Effcy (%)	, ,				Load	PIVI	Only Pivi	
10%	0.43	3.38	1.45	88%	0.174	1.058	0.184		80%-90%	0.26	0.42	3.0
81.3%	0.83	3.08	2.55	88%	0.306	1.058	0.324		100%	0.36	0.12	3.0
90%	0.95	3.08	2.92	88%	0.351	1.058	0.371		50%	0.27	0.08	3.3
93.3%	0.99 1.08	3.08	3.04 3.24	88% 88%	0.365 0.389	1.058 1.058	0.386 0.411					
1000/												
100%	1.08	3.00	3.24	0070	0.303	1.038	0.411					
100%	1.08	3.00	3.24	3070	0.303	1.038	0.411					
	ominal-Controlle		-				0.411					
			-			lay Time	0.411					
	ominal-Controlle	ed Cold-S	-	ions Accountir		lay Time Wt. Average 1-	0.411	Nonimal				
	ominal-Controlle	ed Cold-S Minutes	tart CO Emiss	ions Accountir Nominal	ng for DOC De	lay Time Wt. Average 1- Hour CO		Nonimal Controlled	Overall Cold Start			
	ominal-Controlled	ed Cold-S	-	ions Accountir Nominal		lay Time Wt. Average 1- Hour CO	Cold Start Factor	Nonimal Controlled CO, lbs/hr	Overall Cold Start % CO Removal			
able Y. No Load	ominal-Controlled	ed Cold-S Minutes DOC Delay	tart CO Emiss Guaranteed Effcy (%)	ions Accountir Nominal Controlled CO, lbs/hr	ng for DOC De Minutes Full DOC Control	lay Time Wt. Average 1- Hour CO Emission, lbs/hr	Cold Start Factor	Controlled CO, lbs/hr	% CO Removal			
able Y. No Load 10%	Nominal Uncontrolled Rate, lbs/hr	ed Cold-S Minutes DOC Delay 20	tart CO Emiss Guaranteed Effcy (%) 99%	Nominal Controlled CO, lbs/hr	ng for DOC De Minutes Full DOC Control 40	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 0.95	Cold Start Factor 1.058	Controlled CO, lbs/hr 1.01				
able Y. No Load	Nominal Uncontrolled Rate, lbs/hr	ed Cold-S Minutes DOC Delay 20 10	tart CO Emiss Guaranteed Effcy (%)	ions Accountir Nominal Controlled CO, lbs/hr	ng for DOC De Minutes Full DOC Control 40	lay Time Wt. Average 1- Hour CO Emission, lbs/hr	Cold Start Factor 1.058 1.058	Controlled CO, lbs/hr	% CO Removal 66%			
Load 10% 81.3%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3	ed Cold-S Minutes DOC Delay 20	Guaranteed Effcy (%) 99% 99%	Nominal Controlled CO, Ibs/hr 0.03 0.05	ng for DOC De Minutes Full DOC Control 40	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 0.95	Cold Start Factor 1.058	Controlled CO, lbs/hr 1.01 0.98	% CO Removal 66% 83%			
Load 10% 81.3% 90%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0	Minutes DOC Delay 20 10	Guaranteed Effcy (%) 99% 99% 99%	Nominal Controlled CO, lbs/hr 0.03 0.05	Minutes Full DOC Control 40 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 0.95 0.93	Cold Start Factor 1.058 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11	% CO Removal 66% 83% 83% 83%			
Load 10% 81.3% 90% 93.3%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3	Minutes DOC Delay 20 10 10	Guaranteed Effcy (%) 99% 99% 99%	Nominal Controlled CO, lbs/hr 0.03 0.05 0.06	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 0.95 0.93 1.05	Cold Start Factor 1.058 1.058 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17	% CO Removal 66% 83% 83% 83%			
Load 10% 81.3% 90% 93.3%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3	Minutes DOC Delay 20 10 10	Guaranteed Effcy (%) 99% 99% 99%	Nominal Controlled CO, lbs/hr 0.03 0.05 0.06	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 0.95 0.93 1.05	Cold Start Factor 1.058 1.058 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17	% CO Removal 66% 83% 83% 83%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3	Minutes DOC Delay 20 10 10 10	Guaranteed Effcy (%) 99% 99% 99% 99%	Nominal Controlled CO, lbs/hr 0.03 0.05 0.06 0.06	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 0.95 0.93 1.05 1.10 1.19	Cold Start Factor 1.058 1.058 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17	% CO Removal 66% 83% 83% 83%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8	Minutes DOC Delay 20 10 10 10 ced Cold-S	Guaranteed Effcy (%) 99% 99% 99% 99%	Nominal Controlled CO, lbs/hr 0.03 0.05 0.06 0.06	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1. Hour CO Emission, Ibs/hr 0.95 0.93 1.05 1.10 1.19 elay Time Wtd Average	Cold Start Factor 1.058 1.058 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17	% CO Removal 66% 83% 83% 83%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlled Nominal	Minutes DOC Delay 20 10 10 10 Minutes Minutes	Guaranteed Effcy (%) 99% 99% 99% 99%	Nominal Controlled CO, lbs/hr 0.03 0.05 0.06 0.06 0.07	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1-Hour CO Emission, Ibs/hr 0.95 0.93 1.05 1.10 1.19 Lelay Time Wtd Average 1-Hour	Cold Start Factor 1.058 1.058 1.058 1.058 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17 1.26	% CO Removal 66% 83% 83% 83% 83%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 ominal Controlled Nominal Uncontrolled Uncontrolled	Minutes DOC Delay 20 10 10 10 ced Cold-S	Guaranteed Effcy (%) 99% 99% 99% 99%	Nominal Controlled CO, lbs/hr 0.03 0.05 0.06 0.06 0.07	Minutes Full DOC Control 40 50 50 50	lay Time Wt. Average 1. Hour CO Emission, Ibs/hr 0.95 0.93 1.05 1.10 1.19 elay Time Wtd Average	Cold Start Factor 1.058 1.058 1.058 1.058 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17	% CO Removal 66% 83% 83% 83% 83%			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 cminal Controlled Nominal Uncontrolled Uncontrolled Uncontrolled	Minutes DOC Delay 20 10 10 10 Minutes DOC Delay DOC	Guaranteed Effcy (%) 99% 99% 99% 99% tart VOC Emis	Nominal Controlled CO, lbs/hr 0.03 0.05 0.06 0.06 0.07	Minutes Full DOC Control 40 50 50 50 50 Minutes Full Minutes Full Minutes Full Minutes Full	lay Time Wt. Average 1-Hour CO Emission, Ibs/hr 0.95 0.93 1.05 1.10 1.19 Wtd Average 1-Hour Emission,	Cold Start Factor 1.058 1.058 1.058 1.058 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17 1.26 Nominal Controlled	% CO Removal 66% 83% 83% 83% 0verall Cold Start			
Load 10% 81.3% 90.3% 100% Load Load	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 Ominal Controlled Rate, Ibs/hr 1.0 Nominal Uncontrolled Rate, Ibs/hr 1.0 Nominal Uncontrolle	Minutes DOC Delay 20 10 10 10 Cod Cold-S Minutes DOC Delay	Guaranteed Effcy (%) 99% 99% 99% 99% Guaranteed Effcy (%)	Nominal Controlled CO, lbs/hr 0.03 0.05 0.06 0.06 0.07 sions Accoun Nominal Controlled VOC, lbs/hr	Minutes Full DOC Control Minutes Full Solution	lay Time Wt. Average 1-Hour CO Emission, Ibs/hr 0.95 0.93 1.05 1.10 1.19 Wtd Average 1-Hour Emission, Ibs/hr	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start Factor	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17 1.26 Nominal Controlled VOC, lbs/hr	% CO Removal 66% 83% 83% 83% Overall Cold Start % Removal			
Load 10% 81.3% 90% 93.3% 100%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 cminal Controlled Nominal Uncontrolled Uncontrolled Uncontrolled	Minutes DOC Delay 20 10 10 10 Minutes DOC Delay DOC	Guaranteed Effcy (%) 99% 99% 99% 99% tart VOC Emis	Nominal Controlled CO, lbs/hr 0.03 0.05 0.06 0.06 0.07	Minutes Full DOC Control 40 50 50 50 50 Minutes Full Minutes Full Minutes Full Minutes Full	lay Time Wt. Average 1-Hour CO Emission, Ibs/hr 0.95 0.93 1.05 1.10 1.19 Wtd Average 1-Hour Emission,	Cold Start Factor 1.058 1.058 1.058 1.058 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17 1.26 Nominal Controlled	% CO Removal 66% 83% 83% 83% 0verall Cold Start			
Load 10% 81.3% 90% 93.3% 100% Load 10%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlled Nominal Uncontrolled Rate, lbs/hr	Minutes DOC Delay 20 10 10 10 2d Cold-S Minutes DOC Delay 20 20 20 20	Guaranteed Effcy (%) 99% 99% 99% 99% Guaranteed Effcy (%)	Nominal Controlled CO, Ibs/hr 0.03 0.05 0.06 0.06 0.07 sions Account	Minutes Full DOC Control 40 50 50 50 50 Minutes Full DOC Control 40 40 40 40 40	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 0.95 0.93 1.05 1.10 1.19 elay Time Wtd Average 1-Hour Emission, Ibs/hr	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start Factor 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17 1.26 Nominal Controlled VOC, lbs/hr	% CO Removal 66% 83% 83% 83% Overall Cold Start % Removal			
Load 10% 81.3% 93.3% 100% able Y. No Load 10% 81.3%	Nominal Uncontrolled Rate, Ibs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlled Nominal Uncontrolled Rate, Ibs/hr 1.2	Minutes DOC Delay 20 10 10 10 2d Cold-S Minutes DOC Delay 2d Cold-S Minutes DOC Delay 20	Guaranteed Effcy (%) 99% 99% 99% 99% start VOC Emis Guaranteed Effcy (%) 90%	Nominal Controlled CO, Ibs/hr 0.03 0.05 0.06 0.06 0.07 sions Account	Minutes Full DOC Control 40 50 50 50 Minutes Full DOC Control 40 40 50 50 50 50 40 40 40 50	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 0.95 0.93 1.05 1.10 1.19 lelay Time Wtd Average 1-Hour Emission, Ibs/hr 0.49	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start Factor 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17 1.26 Nominal Controlled VOC, lbs/hr 0.52	% CO Removal 66% 83% 83% 83% Overall Cold Start % Removal 60%			
Load 10% 81.3% 90% 93.3% 100% Load 10%	Nominal Uncontrolled Rate, lbs/hr 2.8 5.3 6.0 6.3 6.8 minal-Controlled Nominal Uncontrolled Rate, lbs/hr	Minutes DOC Delay 20 10 10 10 2d Cold-S Minutes DOC Delay 20 20 20 20	Guaranteed Effcy (%) 99% 99% 99% 99% Guaranteed Effcy (%)	Nominal Controlled CO, Ibs/hr 0.03 0.05 0.06 0.06 0.07 sions Account	Minutes Full DOC Control 40 50 50 50 50 Minutes Full DOC Control 40 40 40 40 40	lay Time Wt. Average 1- Hour CO Emission, Ibs/hr 0.95 0.93 1.05 1.10 1.19 elay Time Wtd Average 1-Hour Emission, Ibs/hr	Cold Start Factor 1.058 1.058 1.058 1.058 Cold Start Factor 1.058	Controlled CO, lbs/hr 1.01 0.98 1.11 1.17 1.26 Nominal Controlled VOC, lbs/hr	% CO Removal 66% 83% 83% 83% Overall Cold Start % Removal 60% 75% 75%			

Table 3WC-2.				J		J		urs at Ea			•					J				200.07				
					ı		<u>по</u>	uis at Ea	cii Kuiit	iiie ivic	Outage				Each	Each	Each	Facility	Facility-	Facility	Each		Each	Facility-
										De-En	or				nset	Genset	Genset	Wide	Wide	Wide		Facility-	Genset	Wide
	Gen	Elec	No.						Correct	Bldg	Storm		Total		DPM	Fuel	NOX	Total PM	Fuel	NOX		, Wide CO	нс	voc
Gen#	Area	Load	Gens	w	М	Q	A-F	A-Step	Tests	Maint	Avoid	Cool	hrs/yr	Ib	os/hr	Gal/Hr	lbs/hr	Tons/yr	Gal/Year	Tons/yr	lbs/hr	Tons/Yr	lbs/hr	Tons/Yr
Unplanned Outage + St	orm Avoida	nce					Unpla	nned Outag	ge + Storm	Avoidan	e													
1-1 to 1-5	Bldg 1	81%	5								24		24		0.32	195	26.3	0.019	23,400	1.58	0.98	0.06	0.29	0.01
2-1 to 2-3	Bldg 2	90%	3								24		24		0.37	213	30.86	0.013	15,336	1.11	1.11	0.04		0.010
3-1 to 3-3	Bldg 3	90%	3								24		24		0.37	213	30.86	0.013	15,336	1.11	1.11	0.04		0.01
ETC-1	ETC	93%	1								24		24		0.39	220	32.68	0.005	5,280	0.39	1.17	0.01	0.29	0.00
Testing at Full Outag	e Loads						_	esting at Fi	ıll Outage	Loads														
1-1 to 1-5	Bldg 1	81%	5			3	6			8			17		0.32	195	26.3	0.014	16,575	1.12	0.98	0.04	0.29	0.012
2-1 to 2-3	Bldg 2	90%	3			3	6			8			17		0.37	213	30.86	0.009	10,863	0.79	1.11	0.03	0.29	0.00
3-1 to 3-3	Bldg 3	90%	3			3	6			8			17		0.37	213	30.86	0.009	10,863	0.79	1.11	0.03		0.00
ETC-1	ETC	93%	1			3	6			8			17		0.39	220	32.68	0.003	3,740	0.28	1.17	0.01	0.29	0.002
100% Load								Testing a	t 100% Lo	ad														
1-1 to 1-5	Bldg 1	100%	5					0.5	8				8.5		0.41	232	36.48	0.009	9,860	0.78	1.26	0.03		0.006
2-1 to 2-3	Bldg 2	100%	3					0.5	8				8.5		0.41	232	36.48	0.005	5,916	0.47	1.26	0.02	0.29	0.004
3-1 to 3-3	Bldg 3	100%	3					0.5	8				8.5		0.41	232	36.48	0.005	5,916	0.47	1.26	0.02		0.004
ETC-1	ETC	100%	1					0.5	8				8.5		0.41	232	36.48	0.002	1,972	0.16	1.26	0.01		0.001
1-6 and 1-7 Reserve	Bldg 1	100%	2					0.5	8				8.5		0.41	232	36.48	0.003	3,944	0.31	1.26	0.01		0.002
2-4 Reserve	Bldg 2	100%	1	-				0.5	8				8.5		0.41	232	36.48	0.002	1,972	0.16	1.26	0.01		0.001
3-4 Reserve ETC-2 Reserve	Bldg 3	100%	1	_				0.5	8				8.5		0.41	232	36.48	0.002	1,972	0.16	1.26	0.01		0.001
ETC-2 Reserve	ETC	100%	1					0.5	8	l			8.5		0.41	232	36.48	0.002	1,972	0.16	1.26	0.01	0.29	0.001
Idle (set to 10% for e	mission																							
calculations)	1					_			Idle		1													
1-1 to 1-5	Bldg 1	10%	5	_	6	0	0	0	0	0	0	9.5	35.5		0.18	45	4.60	0.016	7,988	0.41	1.01	0.09	0.52	0.046
2-1 to 2-3	Bldg 2	10%	3	20	6	0	0	0	0	0	0	9.5	35.5		0.18	45	4.60	0.010	4,793	0.24	1.01	0.05		0.028
3-1 to 3-3	Bldg 3	10%	3	20	6	0	0	0	0	0	0	9.5	35.5		0.18	45	4.60	0.010	4,793	0.24	1.01	0.05	0.52	0.028
ETC-1 1-6 and 1-7 Reserve	ETC Bldg 1	10% 10%	1	20 20	6	3	0 6	0	0	0 8	0 24	9.5 1.5	35.5		0.18	45 45	4.60 4.60	0.003 0.013	1,598 6,165	0.08 0.32	1.01	0.02 0.07		0.009
2-4 Reserve	Bldg 1	10%	1	20	6	3	6			8	24	1.5	68.5 68.5	E	0.18	45 45	4.60	0.013	3,083	0.32	1.01	0.07	0.52	0.038
3-4 Reserve	Bldg 3	10%	1	20	6	3	6			8	24	1.5	68.5		0.18	45	4.60	0.006	3,083	0.16	1.01	0.03		0.018
ETC-2 Reserve	ETC	10%	1	20	6	3	6			8	24	1.5	68.5		0.18	45	4.60	0.006	3,083	0.16	1.01	0.03	0.52	0.018
ETO E NOSCITO	EIC	10%	1	20	0	3	0			0	24	1.5	06.5		0.10	43	4.00	0.000	3,003	0.10	1.01	0.03	0.32	0.010
														1										
														L				Total PM		NOX		CO		VOC
															CON		Facility-							
														\vdash			Emissions	0.187	169,500	11.57		0.739	1	0.293
														U	INCO		D Facility-							
																	Emissions	1.56		16.14		3.15		0.870
														_			Removed	1.37		4.57	ļ	2.41		0.58
														0	veral	Remova	al Effcy, %	88%		28%		77%	Ц	66%

Vantage Data Center					
Cost Category	Cost Factor	Source of Cost Factor	Quant.	Unit Cost	Subtotal Cost
Direct Costs					
Purchased Equipment Costs					
FOB purchase price for Titan Data Center using the "0.6 rule": Cost for 3,000 kWe	•	•	age's 3,000) kWe genera	itors was scaled
Vantage 3000 kWe FOB Purchase Price	e Clean Emission Products	CEP	17	\$71,400	\$1,213,800
Instrumentation	Assume no cost	Assume no cost	0	0	0
Sales Tax	WA state tax	WA state tax	6.5%		\$78,897
Shipping	0.05A	EPA Cost Manual	5.0%		\$60,690
Subtotal Purchased Equipment Cost, PEC	•	•	•		\$1,353,387
				•	
Direct Installation Costs					
Enclosure structural supports	From MSFT CO-3	Robinson Enclosures	0	\$9,812	\$0
Installation	1/2 of EPA Cost Manual	1/2 of EPA Cost Manual	2.5%		\$33,835
Electrical	Assume no cost	Assume no cost	0	0	C
Piping	Assume no cost	Assume no cost	0	0	O
Insulation	Assume no cost	Assume no cost	0	0	C
Painting	Assume no cost	Assume no cost	0	0	C
Subtotal Direct Installation Costs	•				\$33,835
				-	
Site Preparation and Buildings (SP)	Assume no cost	Assume no cost	0	0	C
	·				
Total Direct Costs, DC (PEC + Direct Instal	llation + Site Prep)				\$1,387,222
Indirect Costs (Installation)					
Engineering	0.025*PEC	1/4 of EPA Cost Manual	2.5%		\$33,835
Construction and field expenses	0.025*PEC	1/2 of EPA Cost Manual	2.5%		\$33,835
Contractor Fees	From DIS data center	From DIS data center	6.8%		\$110,968
Startup	0.02*PEC	EPA Cost Manual	2.0%		\$27,068
Performance Test (Tech support)	0.01*PEC	EPA Cost Manual	1.0%		\$13,534
Contingencies	0.03*PEC	EPA Cost Manual	3.0%		\$40,602
Subtotal Indirect Costs, IC					\$259,841
Total Capital Investment (TCI = DC+IC)					\$1,647,063
					TCI per gen
					\$96,886

Item	Quantity	Units	Unit cost	Subtotal					
	Annualized C	Capital Recovery							
Total Capital Cost		-		\$1,647,063		TCI/gen		\$96,886	
Capital Recovery Facto	r, 25 yrs, 4% discount rate			0.06401					
Subtotal Annualized 25	year Capital Recovery Cost			\$105,428					
		nnual Costs							
Annual Admin charges		l (EPA Manual)	0.02	\$32,941					
Annual Property tax		l (EPA Manual)	0.01	\$16,471					
Annual Insurance	1% of TC	l (EPA Manual)	0.01	\$16,471					
For this screening-level	analysis we assumed the low	er-bound annual O&M c	ost of zero.	\$0					
Subtotal Direct Annual	Costs			\$65,883	Combined Pollutants Removal Toni	nages (Nominal	-Controlled)		
Total Annual Cost (Ca	pital Recovery + Direct An	nual Costs)		\$171,311	Pollutant	PM (FH+BH)	co	VOC	NOX
Uncontrolled emission	ns (Combined Pollutants)			21.7	Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1
Assumed Control Effi	ciency			Varies	Nominal Cold-Start Controlled TPY	0.187	0.739	0.293	11.5
Annual Tons Remove	d (Combined Pollutants)			8.94	Tons Removed/Year	1.37	2.41	0.578	4.6
Cost Effectiveness (\$)	oer tons combined pollutan	nt destroyed)		\$19,171	Overall Cold-Start Removal Effcy	88%	77%	66%	28%
					Indiv Poll \$/Ton Removed	\$124,740	\$71,049	\$296,484	\$37,45
Multi-PallutantCost-Ef	fectiveness for "Reasonabl	o Control Cost" vs. A	tual Control	Cost					
Muti-F onutantoos-Li	Ecology Acceptable Unit Cost	Forecast Removal		cceptable Annual					
Pollutant	(\$/ton)	(tons/yr)	Co	st (\$/year)					
NOX	\$10,000	4.57	\$45,735	per year					
CO	\$5,000	2.41	\$12,056	per year					
VOC	\$9,999	0.58	\$5,778	per year					
PM (FH+BH)	\$23,200	1.37	\$31,861	per year					
Total Reasonable	Annual Control Cost for Cor	mbined Pollutants	\$95,430	per year					
	Actual Annual Control Cost		\$171,311	per year					
ls Th	e Control Device Reasonal	ole?	NO (Actua	l >> Acceptable)					

ATTACHMENT F DIESEL OXIDATION CATALYST BACT ASSESSMENT

DIESEL OXIDATION CATALYSTS INSTALLED AT DIS DATA CENTER IN OLYMPIA, WA

To:	Alex Chariton	Phone:	503 220-3536
	EC Power (Portland)	Fax:	503 224-3907
	1805 NW 21st. Ave	Email:	alexc@e-c-co.com
	Portland, OR 97210		A Commission of the Commission
CC:	Brett Fuller/MIRATECH Corporation		
	Scott McBryde/MIRATECH Corporation		
	Courtney McAlpine/MIRATECH Corporation		
From:	David Hammond	Phone:	503-864-3952
	Renosa Company	Fax:	503-864-9282
	608 Joel Palmer Way	Email:	dhammond@renosacorp.com
	Dayton, OR 97114		

Project Reference:

WA DIS

Proposal Number:

REN-10-0695 Rev(4)

Date:

6/21/2010

Firm Quote For:

30 days from Proposal Date

Dear Alex:

\$ZZ, IZ& including shipping)
Not Including:
Taxes
Installation
(commissioning
Vendor Support

MIRATECH Corporation welcomes the opportunity to provide you with a proposal for an NSCR system. We are confident that your organization will benefit from selecting us for this project for the following reasons:

Experience.

 MIRATECH is the leader in providing NSCR, SCR & DPF systems; having more than 17,000 successfully operating units installed in North America, South America, Europe and Asia.

World-Class Technology.

- Consistently set the standards for Best Available Control Technology (BACT)
- Simple, user-friendly control and communication technology; connects to any building's communication systems

U.S.-based Field Services & Support.

- Fast-response field service & technical support
- o Replacement components in stock in Tulsa, Oklahoma
- In-house engineering & product support

The system offered for this project is in accordance with the data received or estimated from your company. The system is designed to provide emission reduction for carbon monoxide (CO), hydrocarbons (NMHC), and particulate matter (PM) as listed on the System Specifications and Performance Warranty Data page. MIRATECH warrants the quoted performance based on the engine emission and operating data you have provided us and that is contained in this proposal. Please note that some engine assumptions were used and converter size may change based on actual engine data.

Once again, thank you for the opportunity to provide this proposal. If you have any questions, please do not hesitate to contact me. I will call you next week to confirm your receipt and satisfaction with this proposal.

Best Regards,

David Hammond Renosa Company Renosa Company

Original Proposal By:

Brett Fuller/MIRATECH Corporation

Scope of Supply

MIRATECH Corporation Scope of Supply

NIS CRUZINA	SP.(0-30-24-EL2.	Quantity per Engine
NSCR Housing	SP-IQ-30-24-HSG	1
Oxidation Catalyst	IQ-RE-30EL	2
Nut, Bolt, and Gasket Set	NBG-IQ30-2	1

Customer Scope of Supply

Description Support Structure	
Attachment to Support Structure (Bolts, Nuts,	Levels, etc.)
was been produced for the control of	
Expansion Joints	
Exhaust Piping	
Inlet Pipe Bolts, Nuts, & Gasket	
Outlet Pîpe Bolts, Nuts, & Gasket	

Project Information

Site Location:

Olympia

Project Name:

WA DIS

Application:

Standby Power

Number of Engines:

Operating Hours per Year:

200

Engine Specifications

Engine Manufacturer:

MTU

Model Number.

20V4000G43

Operating Load for Engine Data Provided:

100%

Power Output:

3,675 bhp

Speed:

1,800 RPM

Type of Fuel:

Sulfur Content:

Number 2 Diesel

500 ppmv or less

Fuel Consumption:

6,000 BTU/bhp-hr

Type of Lube Oil:

1.0 wt%

Lube Oil Consumption:

< 0.00027 gal/bhp-hr

Exhaust Flow Rate:

20,553 acfm (cfm)

Exhaust Temperature:

878°F

Raw Engine Emission Data

				ppinyd @			
čo i i i i i i i i i i i i i i i i i i i	0.45	1.32	117	15% (32 63	3.62	0.60	0,36
NMHG	1.06	3.13	484	262	8.58	1.42	0.86
PMio	0.13	0.37	77.43	41.91	1.03	0.17	0.10

% O2

10.0

H₂O Assumption

12.5

System Specifications and Performance Warranty Data

NSCR System Specifications (SP-IQ-30-24-EL2)

Design Exhaust Flow Rate:

20,553 acfm (cfm)

Design Exhaust Temperature1:

878°F

System Pressure Loss:

11.0 inches of WC (Fresh)

550 - 1250°F (catalyst inlet); 1350°F (catalyst outlet) Exhaust Temperature Limits:

Post System Emission Data

				epmvd @			fanske
	0.04	0.13	12	6	0.36	0.06	0.04
NMHC	0.42	1.25	194	105	3.43	0.57	0.34
PM ₁₀	0.10	0.28	58	31	0.77	0.13	0.08

Proposal Number: REN-10-0695 Rev(4)

<u>Calculated Percent Reductions</u>

	::% Reduction
COL	90.0
NMHC	60.0
PM10	25.0

СО	
nmhc	
pm	

Equipment Details

NSCR Housing & Catalyst Details (SP-IQ-30-24-EL2)

NSCR Housing Details

Model Number:

Quantity²:

Material:

• Paint:

Diameter:

· Inlet Pipe Size & Connection:

· Outlet Pipe Size & Connection:

· Overall Length:

· Weight Without Catalyst:

· Weight Including Catalyst:

· Instrumentation Ports:

Oxygen Sensor Ports:

Oxidation Catalyst Details

Model Number.

Quantity²:

Nut, Bolt, and Gasket Set Details

· Model Number:

Quantity²:

IQ-30-20 SD

SP-IQ-30-24-HSG

1

Carbon Steel

Standard High Temperature Black Paint

30 inches

24 inch FF Flange, 150# ANSI standard bolt pattern

24 inch FF Flange, 150# ANSI standard bolt pattern

53 inches

472 lbs

602 lbs

2 inlet/2 outlet (1/2" NPT)

1 inlet/1 outlet (18mm)

IQ-RE-30EL

2

NBG-IQ30-2

1

Proposal Number: REN-10-0695 Rev(4)

Special Notes/Conditions

- 1 Carbon steel housings are suitable for use in all applications where the housing will not be insulated. Carbon steel housings may only be insulated in applications where the exhaust temperature does not exceed 900°F. If your application requires insulation with an engine exhaust temperature exceeding 900°F, a stainless steel housing is required. Customer installed insulation on carbon steel housings in applications where exhaust temperature exceeds 900°F voids any MIRATECH product warranty.
- 2 Quantities are per engine.
- MIRATECH does not allow any silencer, packed or unpacked, to be installed upstream of any MIRATECH equipment.
 Installation of such equipment will void the warranty per MIRATECH Holdings Terms and Conditions.
- Final catalyst housings are dependent on engine output and required emission reductions. Changes may be made to
 optimize the system design at the time of order.
- · Any drawings included with this proposal are preliminary in nature and could change depending on final product selection.

Domestic Onshore Technical Service Rate Schedule

The Day Rate is charged for supervision of work performed over and above the scope of an installation or services contract. MIRATECH standard Terms and Conditions of Sale apply to all activities.

Technical Services Supervisor Day Rate

\$1,200.00

Additional Information

- The standard Day Rate is for an 8-hour, onshore, non-holiday, weekday and is the minimum charge.
- Charges for greater than 8 hours but less than 12 hours in a single calendar day The number of hours of supervision in a single calendar day divided by 8 and multiplied by the standard Day Rate times any applicable multipliers for Weekends and Holidays (see below). (example 10 hours of supervision in a single day 10/8 x \$1,200 = \$1,500)
- Charges for greater than 12 hours per day Actual time worked over 12 hours per day will be charged at a
 rate of \$225.00 per hours or 1.5 times the calculated hourly rate, which ever is greatest.
- Travel Time actual hours traveled each way divided by 8 and multiplied by the standard Day Rate. No
 multipliers are applicable. (example 5 hours traveled to site 5/8 x \$1,200 = \$750)
- Saturday 1.5 times the standard Day Rate
- Sundays 2 times the standard Day Rate
- All National Holidays 3 times the standard Day Rate

Expense Invoicing Rates

MIRATECH Actual Cost plus 5% - Lodging, phone, meals, parking, air travel, rental cars and incidental costs.

Company Vehicle Mileage at: Portable Exhaust Gas Analyzer Special Tools and Equipment rental \$ 1.00 per mile \$ 400.00/calendar day cost plus 15%

420 S. 145th E. Avenue, Mail Drop A, Tulsa, OK 74108-1305 Phone Number (800) 640-3141 FAX Number (918) 622-3928 www.MIRATECHcorp.com

MIRATECH Onshore Technical Service Day Rate Sheet date January 2009

ACTUAL COSTS TO INSTALL DOCs AT OLYMPIA DATA CENTER, 2010

PRINCIPALS: II. JON RUNSTAD GREGORY K. JOHNSON WALTER R. INGRAM

Sally Alhadeff
Department of Information Services, Director's Office
1110 Jefferson Street SE
P.O. Box 42445
Olympia, WA 98504

TOTAL INSTALLED COST = \$306,222 for 5 gensets = \$61,200 each genset (2,500 kWe)

DIS - WHEELER PROJECT CHANGE ORDER #24 DIESEL OXYDATION CATALYSTS @ UTILITY BUILDING

Dear Sally:

Attached is Change Order #24 for your approval. The purpose of this change order is to add the Diesel Oxydation Catalysts at the generators for the Data Center in accordance with the attached proposal as required by ORCAA.

The total cost for this additional work is \$306,222 and it will not impact the schedule.

If you find everything in order, please sign the attached Change Order and return one original for my files.

Please feel free to contact me with any questions or concerns.

Very truly yours,

Cindy Edens

Senior Vice President

CE/sg

Enclosures

TENANT CHANGE ORDER #24

Description: Diesel Oxydation Catalysts @ Utility Building

Cost Summary:

Construction Costs		\$ 268,793
Sales Tax		\$ 22,847
	Subtotal	\$ 291,640
Developer's Fee		\$ 14,582
	TOTAL	\$ 306.222

Total Delay for Tenant Change Order #24

No Impact

Please sign below approving the total cost of \$306,222 for this additional work.

APPROVED BY:

Facilities Development Manager

Department of Information Services

12/21/2010

Date

DIS Wheeler Project

Jefferson St SE & 14th Avenue SE Olympia, WA 98501

Proposal Description: Provide Diesel Oxydation Catalysts at the generators for the Data Center.

oposal Date: 11/2/10									PCO NUMBER:		DCSC	-0134
tem	Qty UNI	Hours per	Units per Hour	MH	Labor Rate		Mat U.P.	1	Sub		Extended	Division
GENERAL CONDITIONS / GENERAL REQUIREMENTS	uty UNI	IS UMR	nour	MIT NOT THE REAL PROPERTY.	Rate	Cost	U.P.	Cost	U.P.	Cost	Totals	Totals
Project Staff:	EVERTIS OVERENCE	and subsections		CONTRACTOR OF THE PARTY OF THE	MEST COLL	ELOCHECO .	beadersary)	ASSESSED TO S	CONTRACTOR OF THE PARTY OF THE		SECONDA.	0
Sr. Project Mgr	0 MH	1.0000	1.00	0	93	,	1	0	ı	0	0	
Project Mgr	0 MH	1.0000	1.00	0	93		1	0	1	0	0	
Project Engr	0 MH	1.0000	1.00	0	93		2	0	l	0	0	
BIM Detailing / MEP Coordination	0 MH	1.0000	1.00	0	93		1	0	1	0	0	
Project Supt.	MH	1,0000	1.00	0	93	,	1	0		0	0	
Foreman	MH	1.0000	1.00	0	93		1	0	1	0	0	
Femporary Projection & Safety	MH	1.0000	1.00	0	93		1	0		0	0	
.ayout / Field Engineering	MHz	1.0000	1.00	0	93		1	0		0	0	
Cleanup	MH	1.0000	1.00	0	93		1	0		0	0	
Olsposal / Dump Fee's / Eco Pans	EA	1.0000	1.00	0	93			0		0	0	
HSW DIRECT FIELD LABOR	030000100000000000000000000000000000000	20000000	WINDS TO PUTS	SMESSICO DA	Miscretto	155-25HISTO (250)	COMMUNICATION OF THE PARTY OF T	THE RESERVE THE PERSON NAMED IN	110000000000	Check Common or	COMMINISTRATION OF THE PERSON	naral Marketonia
NOW DIRECT FIELD CABOR	CONTRACTOR OF STREET	NAME AND ADDRESS OF THE OWNER, WHEN		0	350000	EL PRIMITO CA	OBSIDERED	DESCRIPTION.	SHEEDS		- HERVEST	0
		1				0	1	0		0	0	
		1					l					
		1										
SUBCONTRACTORS	(98)0007:0000	40 TH SECTION 6	SUDMINISTER STATES	POTENCIANO.	50×30×0×	CTRON PROPERTY.	HEROTECH COLONIA	TANKS AND	to of the lateral section is a second	-	111000000000000000000000000000000000000	
ROBLONIALIONS	CALL PROCESSION OF		The Addition of the	The same	A POLICE	OR COMPANY			THE REAL PROPERTY.	161/800	MEASURE AND ADDRESS OF THE PARTY OF THE PART	252,209
JMCI - Instali DOC's	5 ea	1		0		0	ı	0	5,476	27,378	27,378	
JMCI - Store fabricated sound traps	1 is	1		0		0	l .	o	67,114	67,114	67,114	
EC - Provide DOC's w/ Insulating blankets	5 ea	1		0		0		0	31,543	157,717	157,717	
		1		0		0	ł.	0		0	0	
I		1					ı			0	0	
I		1		0		0	ı	0		0	o	
1		1		0		0	l	0		0	0	
1		1		0		0		0		0	0	
1				0		0		0		0	0	
1		1					ı	- 1				
F .		1					ı			0	٥	
)		1					l	- 1			- 1	
1		1					l	- 1		,		
I		1					ı			٩	٩	
otals		1		0		0		0		252,209	252,209	252,209
Tota	al Direct			0	MH				Subguard	1.05%	2,648	
									y Insurance	1.00%	2,549	
								Excise	- B & O Tax	0.57%	1,470	
									Bond	0.66%	1,709	
								Overte	ad & Profit	3.15%	8,208	
								SI	JB - TOTAL	[268,793	

Proposal Total

\$268,793

Qualifications:

WSST is not included

Proposal is valid for 10 days from when it is submitted.
 No structural modifications are anticipated to be needed, therefore none are included.
 Costs for storing the generator sound traps is included since this equipment had to be stored 6-7 months longer than anticipated due to the emmissions permit delay.

					ata Center							
able X. No	minal-Controlle	ed Cold-St	tart NOX Emis	sions Account	ing for 3WC E	,			Miratech DOC STE	ADY-STATE RE	MOVAL E	FFICIENCIES
	Nominal Uncon.trolled	SCR	Guaranteed	Nominal Controlled	Minutes Full	Nominal Controlled NOX Emission,	Overall Cold Start % NOX			Removal		
Load	NOX, lbs/hr	Delay	Effcy (%)	CO, lbs/hr	SCR Control	lbs/hr	Removal		Pollutant	Effct (%)		
10%	6.0	20	0%	6.00	40	6.00			Nox	0%		
81.3%	37.2	10	0%	37.17	50	37.17			PM (FH+BH)	25%		
90%	43.6	10	0%	43.57	50	43.57	0%		CO	90%		
93.3%	46.1	10	0%	46.14	50	46.14			VOC	60%		
100%	51.5	10	0%	51.50	50	51.50	0%					
able X No	minal-Controlle	ad (Cold-S	Start Adjusted)	PM Emission	Rates (Include	es FH+BH Fact	tor)		Total:EH Adjustmo	at Factors		
INO A INO	Nominal	Total	Nominal	v. L331011	rates (include	וווטיוווט	.51)		Total:FH Adjustme	IL FALLUIS		
ec Load	Uncontrolled Front-Half Only Emiss Rate (lbs/hr)	PM to Front Half PM Ratio	Uncontrolled Total PM Emiss Rate (lbs/hr)	Guaranteed Effcy (%)	Nominal Contr Total PM (lbs/hr)	Dell 1-Hour Cold Start Factor	Total PM,		Load	StacktestTot PM		Total PM to Fro
10%	0.43	3.38	1.45	25%	1.088	1.058	1.152		80%-90%			3.0
81.3%	0.83	3.08	2.55	25%	1.914	1.058			100%	0.36	0.12	3.
90%	0.95	3.08		25%	2.191	1.058			50%	0.27	0.08	3.
93.3%	0.99	3.08	3.04	25%	2.283	1.058	2.416					_
100%	1.08	3.00	3.24	25%	2.430	1.058	2.571					
able Y. No	minal-Controlle	ed Cold-S	tart CO Emiss	ions Accountii	ng for DOC De	lay Time Wt. Average 1						
Load	Nominal Uncontrolled Rate, lbs/hr	Minutes DOC Delay	Guaranteed Effcy (%)	Nominal Controlled CO, lbs/hr	Minutes Full DOC Control	Hour CO Emission, Ibs/hr	Cold Start	Nonimal Controlled CO, lbs/hr	Overall Cold Start % CO Removal			
10%	2.8	20	90%	0.28	40	1.12	1.058	1.18	60%			
81.3%	5.3	10	90%	0.53	50	1.12		1.18	75%			
90%	6.0	10		0.60	50	1.50		1.59	75%			
93.3%	6.3	10	90%	0.63	50	1.58		1.67	75%			
100%	6.8	10		0.68	50	1.70		1.80	75%			
able Y. No	minal-Controlle	ed Cold-S	tart VOC Emis	sions Accoun	ting for DOC D	elay Time						
	Nominal Uncontrolled	Minutes DOC	Guaranteed	Nominal Controlled	Minutes Full	Wtd Average 1-Hour Emission,		Nominal Controlled	Overall Cold Start			
Load	Rate, lbs/hr	Delay	Effcy (%)	VOC, lbs/hr	DOC Control	lbs/hr		VOC, lbs/hr	% Removal			
10%	1.2	20	60%	0.49	40	0.74	1.058	0.78	40%			
				_								
81.3% 90%	1.1 1.1	10 10	60% 60%	0.44 0.44	50 50	0.55 0.55		0.58 0.58	50% 50%			

							Но	urs at Ea	ch Runt	ime Mo	de												
											Outage			Each	Each	Each	Facility	Facility-	Facility	Each		Each	Facility
	_									De-En	or			Genset	Genset	Genset	Wide	Wide	Wide	Genset		Genset	Wide
Can #	Gen	Elec	No.	W		_	۸ -	A C+am	Correct Tests	-	Storm	Cool	Total	DPM	Fuel	NOX	Total PM	Fuel	NOX	CO			VOC
Gen#	Area	Load	Gens	VV	М	Q	A-F	A-Step		Maint	Avoid	Cool	hrs/yr	lbs/hr	Gal/Hr	lbs/hr	Tons/yr	Gal/Year	Tons/yr	IDS/III	Tons/Yr	lbs/hr	Tons/Y
nplanned Outage + St 1-1 to 1-5			5				Unpia	nned Outa	ge + Storm	Avoidan		1	24	2.03	195	37.2	0.122	23,400	2.23	1.40	0.08	0.58	0
1-1 (0 1-5	Bldg 1	81%	5								24		24	2.03	195	37.2	0.122	23,400	2.23	1.40	0.08	0.56	0.
2-1 to 2-3	Bldg 2	90%	3								24		24	2.32	213	43.57	0.083	15,336	1.57	1.59	0.06	0.58	0.0
3-1 to 3-3	Bldg 3	90%	3								24		24	2.32	213	43.57	0.083	15,336	1.57	1.59	0.06		
ETC-1	ETC	93%	1								24		24	2.42	220	46.14	0.029	5,280	0.55	1.67	0.02		
esting at Full Outag	ge Loads	•					Т	esting at F	ull Outage	Loads													
1-1 to 1-5	Bldg 1	81%	5			3	6			8			17	2.03	195	37.2	0.086	16,575	1.58	1.40	0.06	0.58	0.
2-1 to 2-3	Bldg 2	90%	3			3	6			8			17	2.32	213	43.57	0.059	10,863	1.11	1.59	0.04	0.58	0.0
3-1 to 3-3	Bldg 3	90%	3			3	6			8			17	2.32	213	43.57	0.059	10,863	1.11	1.59	0.04	0.58	0.0
ETC-1	ETC	93%	1			3	6			8			17	2.42	220	46.14	0.021	3,740	0.39	1.67	0.01	0.58	0.
00% Load								Testing a	at 100% Lo	ad													
1-1 to 1-5	Bldg 1	100%	5					0.5	8	Ī			8.5	2.57	232	51.50	0.055	9,860	1.09	1.80	0.04	0.58	0.
2-1 to 2-3	Bldg 2	100%	3					0.5	8				8.5	2.57	232	51.50	0.033	5,916	0.66	1.80	0.02		0.
3-1 to 3-3	Bldg 3	100%	3					0.5	8				8.5	2.57	232	51.50	0.033	5,916	0.66	1.80	0.02	0.58	
ETC-1	ETC	100%	1					0.5	8				8.5	2.57	232	51.50	0.011	1,972	0.22	1.80	0.01	0.58	0.
1-6 and 1-7 Reserve	Bldg 1	100%	2					0.5	8				8.5	2.57	232	51.50	0.022	3,944	0.44	1.80	0.02	0.58	0.
2-4 Reserve	Bldg 2	100%	1					0.5	8				8.5	2.57	232	51.50	0.011	1,972	0.22	1.80	0.01	0.58	0.0
3-4 Reserve	Bldg 3	100%	1					0.5	8				8.5	2.57	232	51.50	0.011	1,972	0.22	1.80	0.01		0.0
ETC-2 Reserve	ETC	100%	1		ı	l		0.5	8	l			8.5	2.57	232	51.50	0.011	1,972	0.22	1.80	0.01	0.58	0.0
alculations)									Idle														
1-1 to 1-5	Bldg 1	10%	5	20	6	0	0	0	0	0	0	9.5	35.5	1.15	45	6.00	0.102	7,988	0.53	1.18	0.11	0.78	
2-1 to 2-3	Bldg 2	10%	3	20	6	0	0	0	0	0	0	9.5	35.5	1.15	45	6.00	0.061	4,793	0.32	1.18	0.06		0.
3-1 to 3-3	Bldg 3	10%	3	20	6	0	0	0	0	0	0	9.5	35.5	1.15	45	6.00	0.061	4,793	0.32	1.18	0.06		
ETC-1 1-6 and 1-7 Reserve	ETC	10%	1	20	6	3	6	0	0	0	0	9.5	35.5	1.15 1.15	45 45	6.00 6.00	0.020 0.079	1,598 6,165	0.11 0.41	1.18 1.18	0.02 0.08	0.78 0.78	0. 0.
2-4 Reserve	Bldg 1 Bldg 2	10% 10%	1	20	6	3	6	-	-	8	24 24	1.5	68.5 68.5	1.15	45 45	6.00	0.079	3,083	0.41	1.18	0.08		
3-4 Reserve	Bldg 3	10%	1	20	6	3	6			8	24	1.5	68.5	1.15	45 45	6.00	0.039	3,083	0.21	1.18	0.04	0.78	0.
ETC-2 Reserve	ETC	10%	1	20	6	3	6			8	24	1.5	68.5	1.15	45	6.00	0.039	3,083	0.21	1.18	0.04		
														CON	NTROLLED) Facility-	Total PM		NOX		со		
														UNCO		missions D Facility-	1.17	169,500	16.14		0.958		0
																Emissions	1.56		16.14		3.15		0
																Removed	0.39		0.00		2.19		(
														Overa		al Effcy, %	25%		0%		70%		4

Vantage Data Center					
Cost Category	Cost Factor	Source of Cost Factor	Quant.	Unit Cost	Subtotal Cos
Direct Costs					
Purchased Equipment Costs					
Total Installed Cost for DIS Data Center's fees, and construction costs. The total in units = \$61,200 *(3000/2500)^0.6 = \$68	nstalled price for Vantage's 3,0	000 kWe generators was scaled	. •	•	•
Vantage 3000 kWe Total Installed Cost	DIS Data Center	DIS Data Center	17	\$68,300	\$1,161,10
Instrumentation	Included	Included	0	0	(
Sales Tax	Included	Included	0.0%		\$
Shipping	Included	Included	0.0%		\$
Subtotal Purchased Equipment Cost, PEC					\$1,161,10
Direct Installation Costs					
Enclosure structural supports	Included	Included	0	\$9,812	\$(
Installation	Included	Included	0.0%		\$(
Electrical	Included	Included	0	0	(
Piping	Included	Included	0	0	(
Insulation	Included	Included	0	0	(
Painting	Included	Included	0	0	(
Subtotal Direct Installation Costs					\$
Site Preparation and Buildings (SP)	Included	Included	0	0	
one repeated and a monigo (or)					
Total Direct Costs, DC (PEC + Direct Instal	lation + Site Prep)				\$1,161,10
ndirect Costs (Installation)	1		1 0 00/1		Φ.
Engineering	Included	Included	0.0%		\$
Construction and field expenses	Included	Included	0.0%		\$
Contractor Fees	Included	Included	0.0%		\$
Startup	Included	Included	0.0%		\$
Performance Test (Tech support)	Included	Included	0.0%		\$
Contingencies	Included	Included	0.0%		\$
Subtotal Indirect Costs, IC					\$
Total Capital Investment (TCI = DC+IC)					\$1,161,10
Star Sapital infocution (101 – 20110)					TCI per ge
					\$68,30

Item	Quantity	Units	Unit cost	Subtotal					
	Annualized C	Capital Recovery							
Total Capital Cost		•		\$1,161,100		TCI/gen		\$68,300	
Capital Recovery Factor,	25 yrs, 4% discount rate			0.06401					
Subtotal Annualized 25-y	ear Capital Recovery Cost			\$74,322					
	Direct A	nnual Costs							
Annual Admin charges	2% of TC	l (EPA Manual)	0.02	\$23,222					
Annual Property tax	1% of TC	l (EPA Manual)	0.01	\$11,611					
Annual Insurance	1% of TC	I (EPA Manual)	0.01	\$11,611					
For this screening-level ar	nalysis we assumed the low	er-bound annual O&M c	ost of zero.	\$0					
Subtotal Direct Annual C	Costs			\$46,444	DOC Combined Pollutants Removal	Tonnages (No	minal-Contro	lled)	
Total Annual Cost (Cap	ital Recovery + Direct Ani	nual Costs)		\$120,766	Pollutant	PM (FH+BH)	CO	VOC	NOX
	(Combined Pollutants)			21.7	Nominal Cold-Start Uncontrolled TPY	1.56	3.15	0.870	16.1
Assumed Control Efficiency		Varies	Nominal Cold-Start Controlled TPY	1.170	0.958	0.485	16.14		
Annual Tons Removed (Combined Pollutants)		2.97	Tons Removed/Year	0.39	2.19	0.385	0.0		
Cost Effectiveness (\$ pe	er tons combined pollutan	t destroyed)		\$40,698	Overall Cold-Start Removal Effcy	25%	70%	44%	0%
					Total Annual Cost	\$120,766	\$120,766	\$120,766	\$120,76
					Indiv Poll \$/Ton Removed	\$309,535	\$55,094	\$313,511	#DIV/C
Multi-PollutantCost-Effe	ctiveness for "Reasonable	e Control Cost" vs. Ad	tual Control	l Cost					
	Ecology Acceptable Unit Cost	Forecast Removal	Subtotal A	cceptable Annual					
Pollutant	(\$/ton)	(tons/yr)		st (\$/year)					
NOX	\$10,000	0.00	\$0	per year					
CO	\$5,000	2.19		per year					
VOC	\$9,999	0.39		per year					
PM (FH+BH)	\$23,200	0.39	\$9,052	per year					
	nnual Control Cost for Cor		\$23,863	per year					
	ctual Annual Control Cost			per year					
Is The	Control Device Reasonal	ole?	NO (Actua	ıl >> Acceptable)					

APPENDIX E STACK TEST DATA AND VENDOR-SUPPLIED EMISSION DATA

Client:	GenAcc			
Project No:	11-2146			
Load:	100% MTU 3250			
Source:	WT U 3250			
Test No:	T1	<u>T2</u>	<u>T3</u>	Avg.
Start Time:	08:35 AM	07:35 AM	08:52 AM	
Finish Time:	10:20 AM	08:38 AM	09:54 AM	
Date:	7/18/2011	7/19/2011	7/19/2011	
Pitot Cal. Factor:	0.84	0.84	0.84	
Meter Calibration Factor:	1,035	1.035	1_035	
Stack Length, inches:	0	0	0	
Stack Width, inches:	0	0	0	
Stack Diameter, inches:	35.5	35.5	35.5	
Nozzle Diameter, inches:	0,311 29,20	0.311 29.10	0.311 29.10	
Barometric Pressure, inches Hg: Static Pressure in Stack, Inches H2O:	-0.33	-0.23	-0.27	
Duration of Sample, minutes:	60	60	60	
Meter Start Volume:	487.480	874,750	914,820	
Meter Final Volume:	529.150	914,340	956,000	
Average Meter Pressure, Inches H2O:	1.6800	1.4075	1.5150	1.5342
Average Meter Temperature, degrees F:	88.21	89.9	93.52	90.5
Average Sqrt. Velocity Pressure:	0,6503	0.5990	0.6177	0.6223
Stack Gas Temperature, degrees F:	838.2	823	829 21	830_1
% Carbon Dioxide:	10.2	10.2	10.2	10.2
% Oxygen:	8.4	8.4	8.4	8.4
% Carbon Monoxide:	0.0	0.0	0.0	0.0
Liquid Volume Collected, milliliters:	102.5	100	99.5	100.7
Sample Train Calculations				
Meter Volume, Actual:	41.670	39,590	41.180	40.813
Meter Volume, STP:	40.695	38.386	39.679	39,587
Volume of Water Vapor Condensed:	4.825	4.707	4.683	4,738 44,325
Total Gas Sampled: % Moisture:	45.520 10.60	43.093 10.92	44,362 10,56	10.69
Area of Stack, Square Feet:	6.87	6.87	6.87	6,87
% Excess Air at Test Location:	64.2	64.2	64.2	64.2
Molecular Weight dry, lb/lb-Mole:	29,97	29,97	29.97	29.97
Molecular Weight wet, lb/lb-Mole:	28,70	28.66	28,71	28.69
Absolute Stack Gas Pressure, in Hg:	29.18	29.08	29.08	29.11
Isokinetic, %:	104.0	106.4	106.5	105.6
Velocity and Flow Calculations				
Average Stack Gas Velocity FPS:	58.14	53.37	55.12	55.54
Stack Gas Flow Rate, ACFM:	23,965	21,999	22,720	22,895
Stack Gas Flow Rate, SCFM:	9,506	8,799	9,044	9,116
Stack Gas Flow Rate, DSCF/HR:	509,899	470,302	485,337	488,513
Stack Gas Flow Rate, DSCFM:	8,498	7,838	8,089	8,142
VOC Calculations:				
PPM as Propane:	0_8	1_1	1.2	1.0
LBS/DSCF:	9.14E-08	1,26E-07	1.37E-07	1,18E-07
LBS/HR:	0.1	0.1	0.1	0.1
Brake HP: Grams/Brake HP HR:	4680 0,005	4680 0.006	4680 0.007	4680.0 0.006
Grams/Brake III Titt.		0.000		
NOx Calculations:				
PPMv	29.6	30:1	36,2	32.0
LBS/DSCF:	3,53E-06	3.59E-06	4.32E-06	3.82E-06
LBS/HR: Brake HP:	1.80 4680	1.69 4680	2.10 4680	1_9 4680.0
Grams/Brake HP HR:	0.175	0.164	0.203	0.181
CO Calculations:				
DDM	2.4	1.9	1.2	1.5
PPMv LBS/DSCF:	2,1 1,53E-07	1.2 8.72E-08	1.2 8.72E-08	1.5 1.09E-07
LBS/HR:	0.08	0.04	0.04	0.1
Brake HP:	4680	4680	4680	4680.0
Grams/Brake HP HR:	0,008	0.004	0.004	0.005

Client:	GenAcc			
Project No:	11-2146			
Load:	75%			
Source:	MTU 3250			
Takhia.	T4	TO	TO	Aug
Test No: Start Time:	<u>T1</u> 10:45 AM	<u>T2</u> 04:02 PM	<u>T3</u> 05:20 PM	Avg.
Finish Time:	11:47 AM	05:06 PM	06:23 PM	
Date:	7/18/2011	7/18/2011	7/18/2011	
Pitot Cal. Factor:	0.84	0.84	0.84	
Meter Calibration Factor:	1.035	1.035	1.035	
Stack Length, inches:	0	0	0	
Stack Width, inches:	0	0	0	
Stack Diameter, inches:	35,5	35.5	35,5	
Nozzle Diameter, inches:	0.342	0.342	0.342	
Barometric Pressure, inches Hg:	29.20	29.20	29.20	
Static Pressure in Stack, Inches H2O:	-0_28	-0.26	-0.24	
Duration of Sample, minutes:	60	60	60	
Meter Start Volume:	529,400	729.950	777.840	
Meter Final Volume:	574,050	777.450	825 930	2 1247
Average Meter Pressure, Inches H2O:	2.1500	2.1042	2.1500	2.1347 95.4
Average Meter Temperature, degrees F: Average Sqrt. Velocity Pressure:	94.1 0.5837	94,63 0.5753	97.46 0.5812	0.5801
Stack Gas Temperature, degrees F:	743.8	766.33	759.58	756.6
% Carbon Dioxide:	9.1	9.1	9.1	9.1
% Oxygen:	10.3	10.0	10-1	10.1
% Carbon Monoxide:	0.0	0.0	0.0	0.0
Liquid Volume Collected, milliliters:	99	97	99.5	98.5
Sample Train Calculations				
Meter Volume, Actual:	44.650	47.500	48.090	46.747
Meter Volume, STP:	43,192	45.902	46 236	45.110
Volume of Water Vapor Condensed:	4.660	4.566	4.683	4.636
Total Gas Sampled:	47.852	50,468	50,919	49.746
% Moisture:	9.74	9.05	9.20	9.33
Area of Stack, Square Feet:	6,87	6.87	6.87	6,87
% Excess Air at Test Location:	93.8	88.0	89.9	90.6
Molecular Weight dry, lb/lb-Mole:	29.87	29.86	29,86	29,86
Molecular Weight wet, lb/lb-Mole:	28.71	28.79	28.77	28,76
Absolute Stack Gas Pressure, in Hg:	29.18	29.18	29.18	29.18
Isokinetic, %:	97.0	104,9	104.4	102.1
Velocity and Flow Calculations				
[
Average Stack Gas Velocity FPS:	50.25	49.91	50,31	50.16
Stack Gas Flow Rate, ACFM:	20,713	20,573	20,738	20,675
Stack Gas Flow Rate, SCFM:	8,860	8,639	8,756	8,752
Stack Gas Flow Rate, DSCF/HR:	479,841	471,411	477,031	476,094
Stack Gas Flow Rate, DSCFM:	7,997	7,857	7,951	7,935
VOC Calculations:				
PPM as Propane:	1.8	1.6	1.7	1.7
LBS/DSCF:	2.06E-07	1.83E-07	1.94E-07	1.94E-07
LBS/HR:	0.1	0.1	0.1	0.1
Brake HP:	3509 0.014	3509 0.012	3509 0.013	3509.0 0.013
Grams/Brake HP HR:	0.014	0.012	0.015	0.010
NOx Calculations:				
PPMv	16.9	14.7	18.1	16,6
LBS/DSCF:	2 02E-06	1.75E-06	2.16E-06	1,98E-06
LBS/HR: Brake HP:	0.97 3509	0.83 3509	1.03 3509	0,9 3509.0
Grams/Brake HP HR:	0.125	0.107	0.133	0.122
CO Calculations:				
Name of the second seco				
PPMv LBS/DSCF:	1.3 9.45E-08	1.1 7.99E-08	1.0 7.27E-08	1,1 8,24E-08
LBS/HR:	0.05	0,04	0.03	0.0
Brake HP:	3509	3509	3509	3509.0
Grams/Brake HP HR:	0.006	0.005	0.004	0.005

Client: Project No:	GenAcc 11-2146			
Load: Source:	50% MTU 3250			
Test No:	<u>T1</u>	<u>T2</u>	<u>T3</u>	Avg.
Start Time:	12:05 PM	01:30 PM	02:47 PM	
Finish Time:	01:09 PM	02:33 PM	03:50 PM	
Date:	7/18/2011	7/18/2011	7/18/2011	
Pitot Cal. Factor:	0.84	0.84	0.84	
Meter Calibration Factor:	1.035	1.035	1,035	
Stack Length, inches:	0	0	0	
Stack Width, inches:	0	0	0	
Stack Diameter, inches:	35.5	35.5	35,5	
Nozzle Diameter, inches:	0.412	0.412	0.412	
Barometric Pressure, inches Hg:	29,20	29.20	29.20	
_	-0.16	-0.14	-0.15	
Static Pressure in Stack, Inches H2O:				
Duration of Sample, minutes:	60	60	60	
Meter Start Volume:	577,810	627.920	679.540	
Meter Final Volume:	627_550	679.250	729.520	
Average Meter Pressure, Inches H2O:	2.4700	2,4400	2,3400	2.4167
Average Meter Temperature, degrees F:	87.65	92.9	91.63	90_7
Average Sqrt, Velocity Pressure:	0.4260	0.4212	0.4149	0_4207
Stack Gas Temperature, degrees F:	679.0	684,58	688.71	684.1
% Carbon Dioxide:	8.1	8.1	8.1	8.1
% Oxygen:	11.6	11.7	11.4	11.6
% Carbon Monoxide:	0.0	0.0	0.0	0.0
Liquid Volume Collected, milliliters:	74	66.5	63,5	68.0
Sample Train Calculations				
Sample Ham Calculations				
Meter Volume, Actual:	49.740	51,330	49.980	50.350
Meter Volume, STP:	48,717	49.797	48.590	49_035
Volume of Water Vapor Condensed:	3.483	3.130	2.989	3,201
Total Gas Sampled:	52.200	52,928	51,579	52.235
% Moisture:	6,67	5.91	5.79	6.13
Area of Stack, Square Feet:	6,87	6,87	6.87	6.87
<u>.</u>			115.7	120.0
% Excess Air at Test Location:	120.8	123.5		
Molecular Weight dry, lb/lb-Mole:	29.76	29.76	29.75	29.76
Molecular Weight wet, lb/lb-Mole:	28_98	29.06	29.07	29.04
Absolute Stack Gas Pressure, in Hg	29.19	29 19	29.19	29,19
Isokinetic, %:	97.6	100.5	99.6	99.2
Velocity and Flow Calculations				
10				
Average Stack Gas Velocity FPS:	35_50	35.14	34.67	35,10
Stack Gas Flow Rate, ACFM:	14,633	14,485	14,291	14,470
Stack Gas Flow Rate, SCFM:	6,618	6,519	6,409	6,515
Stack Gas Flow Rate, DSCF/HR:	370,588	368,014	362,248	366,950
Stack Gas Flow Rate, DSCFM:	6,176	6,134	6,037	6,116
VOC Calculations:				
PPM as Propane:	1.7	17	1.4	1.6
LBS/DSCF:	1.94E-07	1.94E-07	1,60E-07	1,83E-07
LBS/HR:	0.1	0,1	0.1	0.1
Brake HP:	2339	2339	2339	2339.0
Grams/Brake HP HR:	0.015	0.015	0.012	0.014
NOx Calculations:				
PPMv	10,3	8.7	9.4	9.5
LBS/DSCF:	1.23E-06	1.04E-06	1.12E-06	1.13E-06
LBS/HR:	0.46	0.38	0.41	0.4
Brake HP:	2339	2339	2339	2339.0
Grams/Brake HP HR:	0.088	0.074	0.079	0.080
CO Calculations:				
PPMv	1.2	1.3	1:1	1.2
LBS/DSCF:	8.72E-08	9.45E-08	7.99E-08	8.72E-08
LBS/HR:	0.03	0.03	0.03	0.0
Brake HP:	2339	2339	2339	2339.0
Grams/Brake HP HR:	0_006	0.007	0,006	0.006

Client:	GenAcc			
Project No:	11-2146			
Load:	25%			
Source:	MTU 3250			
Test No:	<u>. T1</u>	<u>T2</u>	<u>T3</u>	Avg.
Start Time:	06:37 PM	03:42 PM	05:00 PM	7.184-
Finish Time:	07:40 PM	04:45 PM	06:03 PM	
Date:	7/18/2011	7/19/2011	7/19/2011	
Pitot Cal. Factor:	0.84	0.84	0.84	
Meter Calibration Factor:	1.035	1.035	1.035	
Stack Length, inches:	0	0	0	
Stack Width, inches:	0	0	0	
Stack Diameter, inches:	35,5	35,5	35.5	
Nozzle Diameter, inches:	0.492	0.492	0.492	
Barometric Pressure, inches Hg:	29.20	29.10	29.10	
Static Pressure in Stack, Inches H2O:	-0.3	-0,28	-0.31	
Duration of Sample, minutes:	60	60	60	
Meter Start Volume: Meter Final Volume:	826,480 874,150	956,350 1005,810	6.430 54.730	
Average Meter Pressure, Inches H2O:	2.0800	2.1500	2.0700	2,1000
Average Meter Temperature, degrees F:	97,38	95.79	97	96.7
Average Sqrt. Velocity Pressure:	0.2669	0.2728	0.2682	0.2693
Stack Gas Temperature, degrees F:	595.4	605	599.79	600_1
% Carbon Dioxide:	7.7	7.7	7.7	7.7
% Oxygen:	12,6	12.6	12.6	12.6
% Carbon Monoxide:	0.0	0.0	0.0	0.0
Liquid Volume Collected, milliliters:	87	89	89	88.3
Daniela Taria Calculationa				
Sample Train Calculations				
Meter Volume, Actual:	47,670	49.460	48,300	48,477
Meter Volume, STP:	45 832	47,536	46,312	46,560
Volume of Water Vapor Condensed:	4,095	4_189	4.189	4.158
Total Gas Sampled:	49.927	51.725	50,501	50.718
% Moisture:	8.20	8,10	8.29	8.20
Area of Stack, Square Feet:	6.87	6.87	6.87	6,87
% Excess Air at Test Location:	149,3	149.3	149.3	149.3
Molecular Weight dry, lb/lb-Mole:	29.74	29.74 28.79	29.74 28.77	29.74 28.78
Molecular Weight wet, lb/lb-Mole: Absolute Stack Gas Pressure, in Hg:	28.78 29.18	29.08	29.08	29.11
Isokinetic, %:	100.2	102.3	101.3	101.3
×16				
Velocity and Flow Calculations				
Average Stack Gas Velocity FPS:	21.49	22.10	21.68	21.75
Stack Gas Flow Rate, ACFM:	8,858	9,110	8,936	8,968
Stack Gas Flow Rate, SCFM:	4,322	4,390	4,327	4,346
Stack Gas Flow Rate, DSCF/HR:	238,060	242,038	238,112	239,404
Stack Gas Flow Rate, DSCFM:	3,968	4,034	3,969	3,990
VOC Calculations:				
Name of the second seco				
PPM as Propane: LBS/DSCF:	1.4 1.60E-07	0,8 9,14E-08	0.9 1.03E-07	1.0 1.18E-07
LBS/HR:	0.0	0.0	0.0	0.0
Brake HP:	1169	1169	1169	1169
Grams/Brake HP HR:	0.016	0.009	0.010	0.012
NOx Calculations:				
PPMv	14.6	9.9	7.4	10.6
LBS/DSCF:	1.74E-06	1.18E-06	8 83E-07	1.27E-06
LBS/HR:	0.41	0,29	0.21	0.3
Brake HP: Grams/Brake HP HR:	1169 0,161	1169 0 111	1169 0,082	1169 0.118
	0,101	0,111	5,002	V.110
CO Calculations:				
PPMv	0.9	1,1	1.2	1,1
LBS/DSCF: LBS/HR:	6,54E-08 0,02	7 99E-08 0 02	8.72E-08 0.02	7.75E-08 0.0
Brake HP:	1169	1169	1169	1169
Grams/Brake HP HR:	0,006	0.008	0.008	0.007

Client: Project No:	GenAcc 11-2146			
Load:	10%			
Source:	MTU 3250			
			-TA	A =
Test No:	<u>T1</u> 02:05 PM	<u>T2</u>	<u>∃3</u> 05:00 PM	Avg.
Start Time: Finish Time:	02:05 PM 03:29 PM	03:42 PM 04:45 PM	06:03 PM	
Date:	7/19/2011	7/19/2011	7/19/2011	
Pitot Cal. Factor:	0.84	0.84	0.84	
Meter Calibration Factor:	1.035	1.035	1.035	
Stack Length, inches:	0	0	0	
Stack Width, inches:	0	0	0	
Stack Diameter, inches:	35.5	35.5	35.5	
Barometric Pressure, inches Hg:	29.10	29.10	29.10	
Static Pressure in Stack, Inches H2O:	-0.02	-0.02	-0.02	
Duration of Sample, minutes:	60	60	60	
Meter Start Volume:	55.030	99.760	141,420	
Meter Final Volume:	99,470	140.980	185.340	
Average Meter Pressure, Inches H2O:	1,7300	1.8933	1.6917	1,7717
Average Meter Temperature, degrees F:	101-17	102.12	100_67	101.3
Average Sqrt, Velocity Pressure:	0.1900	0.1752	0,1880	0.1844
Stack Gas Temperature, degrees F:	469.8	467.88	457.83	465.2
% Carbon Dioxide:	5.7	5.7	5.7	5.7 14.7
% Oxygen:	14.7	14.7	14.7 0.0	0.0
% Carbon Monoxide: Liquid Volume Collected, milliliters:	0.0 62	0.0 63	61.5	62.2
Liquid Volume Collected, minimers.	02	03	01.5	OZ,Z
Sample Train Calculations				
3 1 				
Meter Volume, Actual:	44,440	41.220	43,920	43,193
Meter Volume, STP:	42,255	39,147	41.794	41.066
Volume of Water Vapor Condensed:	2,918	2.965	2,895	2,926
Total Gas Sampled:	45.174	42.112	44.689	43,992
% Moisture:	6.46	7.04	6.48	6,66
Area of Stack, Square Feet:	6.87	6.87	6.87	6.87
% Excess Air at Test Location:	232.8	232.8	232,8	232,8
Molecular Weight dry, lb/lb-Mole:	29.50	29.50	29.50 28.75	29.50 28.73
Molecular Weight wet, lb/lb-Mole:	28.76 29.10	28,69 29,10	29.10	29_10
Absolute Stack Gas Pressure, in Hg: Isokinetic, %:	105.6	106.5	104.8	105.6
isometto, 70.	100.0	100,0		
Velocity and Flow Calculations				
				40.00
Average Stack Gas Velocity FPS	14.38	13,26	14.14	13,93
Stack Gas Flow Rate, ACFM:	5,927	5,466	5,829	5,741
Stack Gas Flow Rate, SCFM:	3,274	3,025	3,261 182,985	3,187 178,481
Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM:	183,737 3,062	168,722 2,812	3,050	2,975
Stack Gas Flow Rate, DGCFW.	0,002	2,012	0,000	2,070
VOC Calculations:				
PPM as Propane:	2.2	2.2	2.1	2.2
LBS/DSCF:	2.51E-07	2.51E-07	2,40E-07	2.47E-07
LBS/HR:	0.0	0.0	0.0	0.0
Brake HP: Grams/Brake HP HR:	468 0.048	468 0.044	468 0,045	468 0.046
Glams/blake III Tilk.	0,040	0.044	0,040	
NOx Calculations:				
PPMv	75,2	81.3	79.7	78.7
LBS/DSCF:	8 98E-06	9,71E-06	9,52E-06	9.40E-06
LBS/HR:	1,65	1.64	1,74 468	1.7 468
Brake HP: Grams/Brake HP HR:	468 1,599	468 1 587	1,688	1,625
CO Calculations:				
PPMv	2.4	2,3	2,1	2.3
LBS/DSCF: LBS/HR:	1.74E-07 0_03	1.67E-07 0.03	1,53E-07 0,03	1 65E-07 0 0
Brake HP:	468	468	468	468
Grams/Brake HP HR:	0.031	0.027	0.027	0.028

Client:	GenAcc /		
Load:	100% (C	ONTRULL	ED)
Source:	MTU 3250		
504155.			
Test No:	<u>T1</u>	<u>T2</u>	Avg.
Start Time:	10:33 AM	11:17 AM	
Finish Time:	11:05 AM	11:49 AM	
Date:	9/16/2011	9/16/2011	
Pitot Cal Factor:	0.84	0.84	
Meter Calibration Factor:	1_018	1,018	
Stack Length, inches:	0	0	
Stack Width, inches:	0	0	
Stack Diameter, inches:	35.5	35.5	
Nozzle Diameter, inches:	0.384	0.384	
Barometric Pressure, inches Hg:	29 10	29 10	
Static Pressure in Stack, Inches H2O:	-0.2	-0.23	
Duration of Sample, minutes:	30	30	
Meter Start Volume:	772,120	799.890	
Meter Final Volume:	799 770	829.310	
Average Meter Pressure, Inches H2O:	2 9700	3 1800	3.0750
Average Meter Temperature, degrees F:	67.33	72,83	70.1
Average Sqrt. Velocity Pressure:	0.5610	0.5811	0.5711
Stack Gas Temperature, degrees F:	756.2	780 17	768 2
% Carbon Dioxide:	8.2	8,3	8.3
% Oxygen:	10.0	9.9	10.0
% Carbon Monoxide:	0.0	0.0	0.0
Liquid Volume Collected, milliliters:	38.5	37	37.8
Total Weight of PM, (Front 1/2) Mg:	3.4	3.0	3.2
, (
Sample Train Calculations			
Meter Volume, Actual:	27 650	29 420	28,535
	27 607	29.087	28.347
Meter Volume, STP:			1.777
Volume of Water Vapor Condensed:	1.812	1 742	
Total Gas Sampled:	29 419	30.828	30.124 5.90
% Moisture:	6.16	5.65	
Area of Stack, Square Feet:	6,87	6.87	6.87
% Excess Air at Test Location:	86.2	84.7	85.4
Molecular Weight dry, lb/lb-Mole:	29.71	29.72	29.72
Molecular Weight wet, lb/lb-Mole:	28.99	29.06	29.02
Absolute Stack Gas Pressure, in Hg:	29.09	29.08	29.08
Isokinelic, %:	99.6	101 9	100.7
Velocity and Flow Calculations			
A Chall Cas Valasily 500	40.20	EO EE	40.47
Average Stack Gas Velocity FPS:	48 38	50.55	49 47
Stack Gas Flow Rate, ACFM:	19,942	20,837	20,389
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM:	19,942 8,418	20,837 8,622	20,389 8,520
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR:	19,942 8,418 473,953	20,837 8,622 488,099	20,389 8,520 481,026
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM:	19,942 8,418	20,837 8,622	20,389 8,520
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM:	19,942 8,418 473,953	20,837 8,622 488,099	20,389 8,520 481,026
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations:	19,942 8,418 473,953 7,899	20,837 8,622 488,099 8,135	20,389 8,520 481,026 8,017
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF:	19,942 8,418 473,953 7,899	20,837 8,622 488,099 8,135	20,389 8,520 481,026 8,017
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF:	19,942 8,418 473,953 7,899 0,0019 2,72E-07	20,837 8,622 488,099 8,135 0.0016 2.27E-07	20,389 8,520 481,026 8,017 0.0017 2.49E-07
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF:	19,942 8,418 473,953 7,899	20,837 8,622 488,099 8,135	20,389 8,520 481,026 8,017
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR:	19,942 8,418 473,953 7,899 0,0019 2.72E-07 0,13	20,837 8,622 488,099 8,135 0.0016 2.27E-07	20,389 8,520 481,026 8,017 0.0017 2.49E-07
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test resul	19,942 8,418 473,953 7,899 0,0019 2.72E-07 0.13	20,837 8,622 488,099 8,135 0.0016 2.27E-07 0,11	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test resul	19,942 8,418 473,953 7,899 0,0019 2,72E-07 0,13	20,837 8,622 488,099 8,135 0.0016 2.27E-07 0,11	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test resul Grains Per DSCF: LBS/DSCF: LBS/DSCF:	19,942 8,418 473,953 7,899 0,0019 2,72E-07 0,13	20,837 8,622 488,099 8,135 0.0016 2,27E-07 0,11	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12 0,0012 1.71E-07
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test resul Grains Per DSCF: LBS/DSCF: LBS/DSCF:	19,942 8,418 473,953 7,899 0,0019 2,72E-07 0,13	20,837 8,622 488,099 8,135 0.0016 2.27E-07 0,11	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test resul Grains Per DSCF: LBS/DSCF: LBS/DSCF: LBS/DSCF: LBS/DSCF: LBS/DSCF: LBS/DSCF: LBS/DSCF:	19,942 8,418 473,953 7,899 0,0019 2.72E-07 0.13	20,837 8,622 488,099 8,135 0.0016 2,27E-07 0,11	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12 0,0012 1.71E-07
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test results) Grains Per DSCF: LBS/DSCF: LBS/HR: Aqueos: (based on previous test results)	19,942 8,418 473,953 7,899 0,0019 2,72E-07 0,13	20,837 8,622 488,099 8,135 0,0016 2,27E-07 0,11 0,0012 1,87E-07 0,08	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12 0,0012 1,71E-07 0,08
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test result Brains Per DSCF: LBS/DSCF: LBS/HR: Aqueos: (based on previous test results)	19,942 8,418 473,953 7,899 0,0019 2,72E-07 0,13 its) 0,0012 1,76E-07 0,08	20,837 8,622 488,099 8,135 0.0016 2.27E-07 0,11 0,0012 1,67E-07 0.08	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12 0,0012 1,71E-07 0,08
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test result BS/DSCF: LBS/DSCF: LBS/HR: Aqueos: (based on previous test result Grains Per DSCF: LBS/HR:	19,942 8,418 473,953 7,899 0,0019 2,72E-07 0,13 lts) 0,0012 1,76E-07 0,08	20,837 8,622 488,099 8,135 0.0016 2,27E-07 0,11 0,0012 1,67E-07 0.08	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12 0,0012 1,71E-07 0,08
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test result BS/DSCF: LBS/HR: Aqueos: (based on previous test results Grains Per DSCF: LBS/HR: LBS/DSCF: LBS/D	19,942 8,418 473,953 7,899 0,0019 2.72E-07 0.13 (Its) 0,0012 1,76E-07 0.08 s)	20,837 8,622 488,099 8,135 0.0016 2,27E-07 0,11 0,0012 1,67E-07 0,08	20,389 6,520 481,026 8,017 0.0017 2.49E-07 0.12 0.0012 1,71E-07 0,08 0.0023 3,29E-07 0,16
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test result Brains Per DSCF: LBS/DSCF: LBS/HR: Aqueos: (based on previous test results)	19,942 8,418 473,953 7,899 0,0019 2.72E-07 0.13 (Its) 0,0012 1,76E-07 0.08 s)	20,837 8,622 488,099 8,135 0.0016 2,27E-07 0,11 0,0012 1,67E-07 0,08	20,389 6,520 481,026 8,017 0.0017 2.49E-07 0.12 0.0012 1,71E-07 0,08 0.0023 3,29E-07 0,16
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test result BS/HR: Aqueos: (based on previous test results Grains Per DSCF: LBS/HR: Aqueos: (based on previous test results Grains Per DSCF: LBS/HR: Total Particulate: (revised to Include ba	19,942 8,418 473,953 7,899 0,0019 2,72E-07 0,13 lts) 0,0012 1,76E-07 0,08	20,837 8,622 488,099 8,135 0,0016 2,27E-07 0,11 0,0012 1,87E-07 0,08	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12 0,0012 1,71E-07 0,08 0,0023 3,29E-07 0,16 results)
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test result Grains Per DSCF: LBS/HR: Aqueos: (based on previous test results Grains Per DSCF: LBS/DSCF: LBS/DS	19,942 8,418 473,953 7,899 0,0019 2,72E-07 0,13 its) 0,0012 1,76E-07 0,08 s) 0,0023 3,35E-07 0,16 ck-half data from	20,837 8,622 488,099 8,135 0.0016 2.27E-07 0,11 0,0012 1,67E-07 0,08 0.0023 3,22E-07 0,16 1 previous test	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12 0,0012 1,71E-07 0,08 0,0023 3,29E-07 0,16 results)
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/DSCF: LBS/DSCF: LBS/DSCF: LBS/HR: Aqueos: (based on previous test results) Grains Per DSCF: LBS/DSCF:	19,942 8,418 473,953 7,899 0,0019 2,72E-07 0,13 (Its) 0,0012 1,76E-07 0,08 3,35E-07 0,16 ck-half data from	20,837 8,622 488,099 8,135 0,0016 2,27E-07 0,11 0,0012 1,67E-07 0,08 0,0023 3,22E-07 0,16 n previous test	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12 0,0012 1.71E-07 0,08 0,0023 3,29E-07 0,16 results)
Stack Gas Flow Rate, ACFM: Stack Gas Flow Rate, SCFM: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCF/HR: Stack Gas Flow Rate, DSCFM: Front 1/2 Particulate Calculations: Grains Per DSCF: LBS/DSCF: LBS/HR: Organics: (based on previous test result Grains Per DSCF: LBS/DSCF: LBS/HR: Aqueos: (based on previous test results Grains Per DSCF: LBS/DSCF: LBS/DS	19,942 8,418 473,953 7,899 0,0019 2,72E-07 0,13 its) 0,0012 1,76E-07 0,08 s) 0,0023 3,35E-07 0,16 ck-half data from	20,837 8,622 488,099 8,135 0.0016 2.27E-07 0,11 0,0012 1,67E-07 0,08 0.0023 3,22E-07 0,16 1 previous test	20,389 8,520 481,026 8,017 0.0017 2.49E-07 0,12 0,0012 1,71E-07 0,08 0,0023 3,29E-07 0,16 results)

REVISED TO
INCLUDE
BACK HALF PM
DATA FROM
PREVIOUS TESTING
ON SAME ENGINE
W/ CONTROLS

Client:	GenAcc	CONTRA	140)
Load:	-	JON 11201	ner)
Source:	MTU 3250		
Test No:	I1	T2	Avg.
Start Time:	12:00 PM	12:44 PM	
Finish Time:	12:32 PM	01:16 PM	
Date:	9/16/2011	9/16/2011	
Pitot Cal. Factor:	0.84	0.84	
Meter Calibration Factor:	1.018	1.018	
Stack Length, inches:	0	0	
Stack Width, inches:	0	0	
Stack Diameter, inches:	35.5	35.5	
Nozzle Diameter, inches:	0,384	0.384	
Barometric Pressure, inches Hg:	29.20	29.10	
Static Pressure in Stack, Inches H2O:	-0_1	-0.09	
Duration of Sample, minutes:	30	30	
Meter Start Volume:	829,510	854 630	
Meter Final Volume:	854.420	877.350	
Average Meter Pressure, Inches H2O:	2 4500	2.0700	2.2600
Average Meter Temperature, degrees F:	75,33	76.33	75.8
Average Sqrt Velocity Pressure:	0.4876	0.4432	0.4654
Stack Gas Temperature, degrees F:	648.7	658.67	653.7
% Carbon Dioxide:	6.0	6.1	61
% Oxygen:	12.7	12.6	12.7
% Carbon Monoxide:	0.0	0.0	0.0
Liquid Volume Collected, milliliters:	36.5	34	35.3
Total Weight of PM, (Front 1/2) Mg;	2.5	1.4	2.0
Sample Train Calculations			
Ad a Med are Asharb	24.040	22 720	22 04 6
Meter Volume, Actual:	24.910	22,720	23,815
Meter Volume, STP:	24.551	22.254	23 403
Volume of Water Vapor Condensed:	1.718 26.269	1.600 23.854	1.659 25.062
Total Gas Sampled:	6.54	6.71	6.62
% Moisture: Area of Stack, Square Feet:	6.87	6.87	6.87
	144.9	142.2	143.5
% Excess Air at Test Location: Molecular Weight dry, lb/lb-Mole:	29.47	29.48	29 47
Molecular Weight wet, Ib/lb-Mole:	28.72	28.71	28.71
Absolute Stack Gas Pressure, in Hg:	29 19	29.09	29.14
Isokinetic, %:	97 0	97.6	97.3
Velocity and Flow Calculations			
Average Stack Gas Velocity FPS:	40.27	36.83	38,55
Stack Gas Flow Rate, ACFM:	16,599	15,181	15,890
Stack Gas Flow Rate, SCFM:	7,712	6,967	7,340
Stack Gas Flow Rate, DSCF/HR:	432,485	389,951	411,218
Stack Gas Flow Rate, DSCFM:	7,208	6,499	6,854
Front 1/2 Particulate Calculations:	JOHN - 11		

Grains Per DSCF:	0.0016	0.0010	0.0013
LBS/DSCF:	2.25E-07	1,39E-07	1,82E-07
LBS/HR:	0.10	0_05	0.08
Organics: (based on previous test resu	its)		
Grains Per DSCF:	0.0007	0.0007	0 0007
LBS/DSCF:	9 88E-08	1.04E-07	1.01E-07
LBS/HR:	0 04	0.04	0.04
EDOMIN.	0,04	0.04	3.04
Aqueos: (based on previous test result	s)		
Grains Per DSCF:	0.0025	0.0026	0_0025
LBS/DSCF:	3.59E-07	3.67E-07	3,63E-07
LBS/HR:	0 16	0 14	0.15
Total Particulator Inquiend to Include he	nek half data from	nravioue tost	rasulte)
Total Particulate: (revised to include ba	ick riair data from	previous test i	eauns)
Grains Per DSCF:	0_0048	0.0043	0,0045
			6 46E-07
LBS/DSCF:	6 83E-07	6 09E-07	0 400-01
	6 83E-07 0 30	0 24	0 27
LBS/DSCF:			

REVISED TO INCLUDE
BACK HALF PM

DATA FROM

PREVIOUS TESTING

ON SAME ENGINE

W/ CONTROLS

I (NTE) PM Emissions		
Total Controlled (N	Engine Emission Specs	

Engine Emission Specs	·										
End Continued in	14) -		(1997)	0 (cd4)	Cohauct Mase Close (lea/h)		Following Manner Closer (Angles)	(WXC) + restrict	Exhaust Temperature	Exhaust Temperature after	
100% Load		232	Cowel (nw)	3490 4	0	29	22895	25 32			
75% Load		183	2		3209	17631	20675			807.8	
% road		127	1	1744 2	2339	14079	14470		97 386		
25% Load 10% Load		39			468	6825	5741		272 31	1 591.8	
100%		100%	Load - Contr	olled emission	100% oad - Controlled emissions (NTE) @ 85% Reduction Efficiency	Efficiency			Stack Tact Beculte		
						_			State rest results		Total Controlled PM
Total Controlled PM emissions (NTE) MTU 20v4000G831 3D EPA Tier2 (1,800 rpm)	g/kWh	0.063	g/bhp-hr 0.047	lbs/bhp-hr 047 0.000103	hr lbs/hr 103	0.484	Emissions per unit of fuel consumed (lbs/gal) 0.00209	Uncontrolled PM Emissions (front half) g/bhp-hr 0.0	Controlled PM Emissions (front half) g/bhp-hr 0.086 0.012	%Reduction from nominal uncontrolled 86.0%	
%06		1 %06	oad - Contro	lled emissions	90% Load - Controlled emissions (NTE) @ 85% Reduction Efficiency	Efficiency					
Total Controlled PM emissions (NTE) MTU 20V4000G831 3D EPA Tier2 (1,800 rpm) PM	g/kWh	0.061	g/bhp-hr 0.	lbs/bhp-hr 046 0.00010	hr lbs/hr 100	0.425	Emissions per unit of fuel consumed (lbs/gal) 0.00183				
%08		1 %08	Load - Contro	lled emissions	80% Load - Controlled emissions (NTE) @ 85% Reduction Efficiency	Efficiency					
Total Controlled PM emissions (NTE) MTU 20/4000G83L 3D EPA Tier2 (1,800 rpm) PM	g/kWh	0.059	g/bhp-hr 0.0	-hr lbs/bhp-hr 0.044 0.000097	hr lbs/hr 097	0.366	Emissions per unit of fuel consumed (lbs/gal) 0.00158				
75%		75% 1	Load - Contro	olled emissions	75% Load - Controlled emissions (NTE) @ 85% Reduction Efficiency	Efficiency					
Total Controlled PM emissions (NTE) MTU 20/4000G831. 3D EPA Tier2 (1,800 rpm.) PM	g/kWh	0.059	g/bhp-hr 0.0436	lbs/bhp-hr 436 0.0000	hr lbs/hr 096	0.337	Emissions per unit of fuel consumed (lbs/gal) 0.00145				
20%		70%	Load - Contro	olled emissions	70% Load - Controlled e missions (NTE) @ 85% Reduction Efficiency	Efficiency					
Total Controlled PM emissions (NTE) MTU 20/4000G83L 3D EPA Tier2 (1,800 rpm) PM	g/kWh	0.071	g/bhp-hr 0.	hr lbs/bhp-hr 0.053 0.000117	hr lbs/hr 117	0.340	Emissions per unit of fuel consumed (lbs/gal) 0.00147				
%09		1%09	Load - Contro	olled emissions	60% Load - Controlled emissions (NTE) @ 85% Reduction Efficiency						
Total Controlled PM emissions (NTE) MTU 20/4000G83L 3D EPA Tier2 (1,800 rpm) PM	g/kWh	0.084	g/bhp-hr 0.062	lbs/bhp-hr 062 0.000137	hr lbs/hr 137	0.344	Emissions per unit of fuel consumed (lbs/gal) 0.00148				
20%		20%	oad - Contro	lled emissions	50% nad - Controlled e missions (NTF) @ 85% Reduction Efficiency	Efficiency			Stack Test Results		
Total Controlled PM emissions (NTE) MRU 20040000681. 3D EPA Tier?. (J.800 rpm.) PM	g/kwh	0.09	g/bhp-hr 0.0	hr lbs/bhp-hr 0.067 0.0001			Emissions per unit of fuel consumed (lbs/gal) 0.0015	Uncontrolled PM Emissions (front half) g/bhp-hr 0.1	О Ш 80	%Reduction from nominal uncontrolled 88.69	Total Controlled PM Emissions based on previous stack test data g/bhp-hr 6
40%		40%	Load - Contro	lledemissions	40% Load - Controlled emissions (NTE) @ 85% Reduction Efficiency	Efficiency					
Total Controlled PM emissions (NTE) MTU 20/4000G83L 3D EPA Tier2 (1,800 rpm) PM	g/kwh	0.110	g/bhp-hr 0.0	lbs/bhp-hr 082 0.00018	hr lbs/hr 180	0.314	Emissions per unit of fuel consumed (lbs/gal) 0.00230				
30%		30%1	Load - Contro	lled emissions	30% Load - Controlled emissions (NTE) @ 85% Reduction Efficiency						
Total Controlled PM emissions (NTE) MTU 20V4000G831.3D EPA Tier2 (1,800 rpm) PM	g/kWh	0:130	g/bhp-hr 0.	lbs/bhp-hr 097 0.000213	hr lbs/hr 213	0.283	Emissions per unit of fuel consumed (lbs/gal) 0.00312				
25%		25% L	oad - Contro	lled emissions	25% Load - Controlled emissions (NTE) @ 85% Reduction Efficiency	Efficiency					
Total Controlled PM emissions (NTE) MTU 20V4000G831.3D EPA Tier2 (1,800 rpm) PM	g/kWh	0.140	g/bhp-hr 0.104	lbs/bhp-hr 104 0.000229	hr lbs/hr 229	0.268	Emissions per unit of fuel consumed (lbs/gal) 0.00352				
20%		20% 1	Load - Contro	olled emissions	20% Load - Controlled emissions (NTE) @ 85% Reduction Efficiency	Efficiency					
Total Controlled PM emissions (NTE) MTU 20V4000G83L 3D EPA Tier2 (1,800 rpm) PM	g/kWh	0.177	g/bhp-hr 0.	hr lbs/bhp-hr 0.132 0.00029	hr lbs/hr 029	0.243	Emissions per unit of fuel consumed (lbs/gal) 0.00400				
10%		10% [Load - Contro	olled emissions	10% Load - Controlled emissions (NTE) @ 85% Reduction Efficiency						
Total Controlled PM emissions (NTE) MTU 20V4000G831.3D EPA Tier2 (1,800 rpm) PM	g/kWh	0.252	g/bhp-hr 0.1	-hr lbs/bhp-hr 0.188 0.00041	hr lbs/hr 041	0.194	Emissions per unit of fuel consumed (lbs/gal) 0.0050				
								_			

Ox O	0.001100352 0.005721831	Tier IV Final Emissio lbs/b.h.phr lbs/b.h.phr	0.5 2.6	gr./bhp-hr gr./bhp-hr	NT	E Controlled]
МНС И	0.000308099 4.84155E-05	lbs/b.h.phr lbs/b.h.phr	0.14 0.022	gr./bhp-hr gr./bhp-hr			
ngine Emission Specs							Exhaust
uel Consumption 10% Load	Gal/hr	Power (kW) 32 3010	Power (bhp) 4036	Exhaust Mass Flow (kg/h) 17802	Exhaust Mass Flow (acfm) 22895	Power Output (eKW) Exhaust Temp after turbine (
5% Load 3% Load		83 2257 27 1505	3027 2018	16060 12748	20675 14470	2084 1370	417 385
% Load % Load		39 752 39 301		8668 6643	8968 5741	654 226	337 303
00%	100	% Load - Controlled	d emissions (NTE	e) @ Reduction Efficiency Goa	ls*	Stack Test Results	
ontrolled emissions (NTE)					Emissions per unit of fuel	%Reduction fr	
ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh		lbs/bhp-hr 0.0013	lbs/hr 5.2	consumed (lbs/gal) 0.022	g/bhp-hr nominal unco	96.89%
D C M	1. 0.08 0.00	82 0.07	0.001772 0.000145 0.000013	7.15 0.58 0.052	0.0025 0.0025	0.005 0.006	98.66% 95.53%
72 D2	0.00		0.000012	0.048 4159.9	0.00021	,	
10%	90'	≤ Load - Controlled	emissions (NTE) @ Reduction Efficiency Goal	s*	1	
ontrolled emissions (NTE) ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr	lbs/bhp-hr	lbs/hr	Emissions per unit of fuel consumed (lbs/gal)		
0x 0	0.6 1.25	84 0.5100588 28 0.93421296	0.002056	4.2 7.30	0.0180 0.0315		
C M	0.099 0.008	84 0.006591988	0.000015	0.58 0.052	0.0025 0.00022		
D2 D2	0.00 64:			0.044 3811	0.00019 16.4		
0%	80	6 Load - Controlled	emissions (NTE) @ Reduction Efficiency Goal]	
ontrolled emissions (NTE) ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr	lbs/bhp-hr	lbs/hr 3.2	Emissions per unit of fuel consumed (lbs/gal) 0.014		
x0 C	0.5 1.42 0.111	56 1.063	0.00234	7.44 0.584	0.014 0.0321 0.0025		
M D2	0.009	88 0.007 75 0.006	0.000016 0.000012	0.052 0.040	0.00022 0.00017		
02	655			3463	14.9	J	
5%	75	6 Load - Controlled	emissions (NTE) @ Reduction Efficiency Goal	s*	Stack Test Results	
ontrolled emissions (NTE) ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr	lbs/bhp-hr	lbs/hr	Emissions per unit of fuel consumed (lbs/gal)	%Reduction fr g/bhp-hr nominal unco	ntrolled
Ox	0. 1.5	54 0.40 12 1.13	0.00089	2.7 7.51	0.012 0.0324	0.122 0.005	96.97% 99.04%
C M D2	0.11 0.01 0.00		0.000193 0.000017 0.000012	0.58 0.052 0.038	0.0025 0.00022 0.00016	0.013	92.74%
02	6	76 0.0057 62 493.7	1.1	3288.1	14.2	J	
0% entrolled emissions (NTE)	70	% Load - Controlled	emissions (NTE) @ Reduction Efficiency Goal	s* Emissions per unit of fuel		
ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm) Ox	g/kWh	g/bhp-hr 0.376	lbs/bhp-hr 0.000827	lbs/hr 2.21	consumed (lbs/gal) 0.0095		
0	1.77 0.12	12 1.321 74 0.095	0.002907	7.37 0.54	0.0318 0.00232		
M D2	0.01 0.00	77 0.006	0.000013	0.062 0.033	0.00027 0.00014		
02	674			2891	12.5] 1	
60% entrolled emissions (NTE)) @ Reduction Efficiency Goal	Emissions per unit of fuel		
ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm) Ox	g/kWh			lbs/hr 1.73	consumed (lbs/gal) 0.0075		
D C M	2.03 0.13 0.02	72 0.102	0.000225	7.23 0.49 0.072	0.0311 0.00213 0.00031		
72 D2	0.00	79 0.006	0.000013	0.029 2494	0.00012		
60%	50%	oad - Controlled er	missions (nomin	aal) @ Reduction Efficiency Go	alt*	Stack Test Results	
ontrolled emissions (NTE)				-, c	Emissions per unit of fuel	%Reduction fr	rom
ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr 45 0.34	lbs/bhp-hr 0.0007	lbs/hr 1.5	consumed (lbs/gal) 0.006	g/bhp-hr nominal unco	ntrolled 97.62%
5 C	2. 0.14	21 0.106	0.00354 0.00023	7.15 0.47	0.031 0.002	0.006 0.014	99.20% 93.53%
M 02 02	0.02 0.00		0.00004	0.078 0.026	0.000		
10%		310.0			-	ı 1	
ontrolled emissions (NTE)	g/kWh	g/bhp-hr	lbs/bhp-hr) @ Reduction Efficiency Goal	Emissions per unit of fuel consumed (lbs/gal)	1	
ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm) Ox	g/KWN 0.4 3.3	46 0.33	0.00073	1.19 7.72	0.0113 0.1065		
С С	0.1 0.0	B7 0.140	0.00031	0.45 0.071	0.0055 0.00084		
D2 D2	0.0 7	0.0050 0.0050 0.0050		0.019 1885	0.00015 19.0		
0%	30	% Load - Controlled	emissions (NTE) @ Reduction Efficiency Goal	s*	1	
ontrolled emissions (NTE) ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr	lbs/bhp-hr	lbs/hr	Emissions per unit of fuel consumed (lbs/gal)		
0x 5	0.4 4.5	79 3.415	0.00751	0.88 8.29	0.0162 0.1821		
C M D2	0.2 0.0 0.0	35 0.026	0.000057	0.43 0.065 0.012	0.0091 0.00135 0.00019		
02		52 561			28.0		
5%	25	≤ Load - Controlled	emissions (NTE) @ Reduction Efficiency Goal	s*	Stack Test Results	
ontrolled emissions (NTE) ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr	lbs/bhp-hr	lbs/hr	Emissions per unit of fuel consumed (lbs/gal)	%Reduction fr g/bhp-hr nominal unco	
Ox)	0. 5.1	44 0.33 84 3.87	0.00072	0.73 8.58	0.0187 0.2200	0.118 0.0007	96.40% 99.96%
C M	0.25 0.03	77 0.028	0.00042	0.42 0.062	0.0108 0.00160	0.012	96.91%
D2 D2	0.0 7		0.000008	0.008 1269	0.00021 32.5	J	
0%	20	% Load - Controlled	emissions (NTE) @ Reduction Efficiency Goal]	
ontrolled emissions (NTE) ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr	lbs/bhp-hr	lbs/hr	Emissions per unit of fuel consumed (lbs/gal)		
x0 C	1.0 6.2 0.2	64 4.67	0.00177 0.01028 0.00047	1.004 7.579 0.360	0.0258 0.1943 0.0092		
M D2	0.0	50 0.037 07 0.005	0.00008	0.058	0.00149 0.00021		
02	9	10 678	1.49	1110	28.5	J	
0%	10	6 Load - Controlled	emissions (NTE) @ Reduction Efficiency Goal	s*	Stack Test Results	
ontrolled emissions (NTE) ITU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr	lbs/bhp-hr	lbs/hr	Emissions per unit of fuel consumed (lbs/gal)	%Reduction fr g/bhp-hr nominal unco	ntrolled
0x	2.	35 1.75 1.4 6.3	0.0039	1.6 5.6	0.040 0.1431	1.625 0.028	69% 99%
	0.		0.00059	0.24 0.050	0.0061 0.0013	0.046	92%
C M	0.07		0.000				
	0.07 0.0 11	12 0.0091	0.000020 1.96	0.008 792	0.00021 20.3		
VI 22 22 7Clarity 3000 Emissions Control System for 3000-XC6DT2 engines OX	*REDUCTION EFF. GOALS	12 0.0091 95 891	0.000020	0.008 792	0.00021 20.3		
M D2 D2 D2 TrClarity 3000 Emissions Control System for 3000-XC6DT2 engines	*REDUCTION EFF. GOALS 99 99 99	12 0.0091 95 891	0.000020 1.96	0.008 792	0.00021 20.3		

SO2 emissions generated from diesel fuel consumed		100% Load	75% Load	50% Load	25% Load	10% Load
Sulfur Content of diesel fuel (ppm)	ppm (TIER 3 and Tier 4 Limit)	15	15	15	15	15
Density of Diesel Fuel (lb/gal)	lbs/gal	6.88	6.88	6.88	6.88	6.88
Gal of Diesel Fuel Consumed per hour	gal/hr fuel consumed	232	183	127	39	39
Pounds (lb) sulfur in consumed diesel fuel	lbs/hr sulfur in fuel consumed	0.024	0.019	0.013	0.0040	0.0040
	lbs/hr SO2 based on					
Pounds SOx formed (2:1)	stoichiometric combustion	0.048	0.038	0.026	0.008	0.0080

Final Tier IV Emission Standards - Generator Sets > 900 KW		F		-		F		
Pollutant	0.001100352	lier IV Fi	nal Emission Standar	ds	ar /hhn.hr			
CO	0.001100332	d.11.0/sul	-hr	. 9	gr./bhp-hr	Jour I	Incontrolled	
502		lbs/b.h.p	ļ.		gr./bhp-hr	5		
NMHC	0.000308099	d.h.d/sdl	lbs/b.h.phr 0.14	.14	gr./bhp-hr			
N.A.	4.041335-03	103/07:II:p	5	770	111-d1107:138	٦		
Engine Emission Specs								Г
Fuel Consumption	Gal/hr	Power (kW)	Power (bhp)	-	Exhaust Mass Flow (kg/h)	Power Output Exhaust Mass Flow (acfm) (eKW)	Exhaust Temperature Exhaust Temperature after turbine (°C) after turbine (°F)	ē
100% Load			3010		1780	895	0 446	ωį
75% Load		183	2257	3027		20675	417	9
50% Load		127	1505	2018		14470	385	2 2
25% L0ad 10% Load		39	301	404	6643	5 6508 654 3 5741 226	6 303 5577.4	o 4.
	100% 1009		,					
Uncontrolled emissions (nominal)	1000 F080							
MTU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr	lbs/bhp-hr		bs/hr			
XON		7.8	5.8	0.013	51.7			
HC HC		0.18	0.13	0.00030	11.			
PM		090:0	0.045	0.00010				
502		0.0072	0.0054	0.000012	0.048	œl œ		
			Cont	4		,		
	75% Load	-	-			·		
Uncontrolled emissions (nominal)	g/kWh	a/bhn-hr	rh-udh/shl		lbs/hr			
NOX	SQ.WANE	5.4		0.009	111/5011	Im		
03		0.70	0.52	0.00115	3.5			
HC		0.24	0.18	0.00039				
MH CO3		0.080	0.060	0.00013				
CO2		662	493.7	1.09	3288.1			
						ı F		
[Incontrolled emissions (nominal)	50% Load							
MTU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr	lbs/bhp-hr		lbs/hr			
×on		1.0	3.4	0.007	14.9	o Im		
HC		0.29	0.22	0.00048				
PM		0.18	0.13	0.00030				
502		0.0079	0.0059	0.000013	0.026	3014		
202		CGO	0.010	1.1		a		
	25% Load		_					
Uncontrolled emissions (nominal) IMTU 20V4000G83L 3B EPA Tier2 (1.800 rpm)	g/kWh	g/bho-hr	lbs/bhp-hr		lbs/hr			
NOX	5	4.4		0.007	7.			
00		2.4	1.8	0.00394				
Md		0.29	0.22	0.00048	0.86			
502		0.005	0.0036	0.000008)	(m)		
CO2		767	572.0	1.26				
	10% Load							
Uncontrolled emissions (nominal)								
MTU 20V4000G83L 3B EPA Tier2 (1,800 rpm)	g/kWh	g/bhp-hr	lbs/bhp-hr	0	lbs/hr			
XON		3.9	5.2	0.011		ا م		
TC TC		0.73	0.54	0.0012		100		
Md		0.58	0.43	0.00095	0.384			
502		0.012	600.0	0.000020		Imi		
CO2		1195	891.1	1.96		2		
SO2 Emissions Basis								
		100% Load	75% Load		50% Load	25% Load 10% Load		
Sulfur Content of diesel fuel (ppm)	ppm (TIER 3 and Tier 4 Limit)	tt) 15		15	15	15 15		
	lbs/gai		0 -	88	b.88 127		_	
	Bal/III idei consumed		1 6	070	0.013			

SO2 emissions generated from diesel fuel consumed		100% Load	75% Load	50% Load	7
Sulfur Content of diesel fuel (ppm)	ppm (TER 3 and Tier 4 Limit)	15	15	15	
Density of Diesel Fuel (lb/gal)	lbs/gal	6.88	6.88	6.88	
Gal of Diesel Fuel Consumed per hour	gal/hr fuel consumed	232	183	127	
Pounds (Ib) sulfur in consumed diesel fuel	lbs/hr sulfur in fuel consumed	0.024	0.019	0.013	
	lbs/hr SO2 based on				
Pounds SOx formed (2:1)	stoichiometric combustion	0.048	0.038	0.026	

10% Load 15 6.88 39 0.0040

15 6.88 39 0.0040

0.008

0.008

Notes: Nominal Emissions Values based on OEM Published Uncontrolled Emissions (Nominal) Data