

Technical Support Document for Stationary and Portable Rock Crushing Operations

General Order of Approval No. 11AQ-GO-01

December 6, 2011

TABLE OF CONTENTS

1.	SUMMARY	. 1
2.	PURPOSE OF GENERAL ORDER	. 1
3.	BACT	. 1
4.	REVIEW OF EXISTING APPROVAL CONDITIONS	. 4
5.	EMISSIONS	. 5
7.	AMBIENT IMPACT ANALYSIS	. 6
8.	CONCLUSION	. 7
9.	ACRONYMS AND ABBREVIATIONS	. 8
APP	ENDIX A. EMISSIONS CALCULATION	. 9
APP	ENDIX B. UNPAVED ROADS CALCULATIONS	11
APP	ENDIX C. AERSCREEN RESULTS	12
APP	ENDIX D. NAAQS ANALYSIS	16
APP	ENDIX E. FUGITIVE EMISSIONS GUIDANCE	19

LIST OF TABLES

Table 1.	Emission Factors Comparison	2
Table 2.	Maximum Allowable Emissions	5
Table 3.	AAQS	6
Table 4.	Background	6
Table 5.	AAQS Analysis	7

1. SUMMARY

This General Order combines portable rock crushers with the stationary rock crushers. The old general orders remain in effect for rock crushers operating under a valid order for their sources. Any new rock crushers must comply with the requirements of this General Order.

2. PURPOSE OF GENERAL ORDER

On March 1, 2011, the Washington State Department of Ecology (Ecology) revised the General Regulation for Air Pollution Sources Chapter 173-400 Washington Administrative Code (WAC). There is a new section in the rule, Section 036 (Relocation of Portable Sources), which contains a number of relocation requirements. One of those requirements is that "a permitting authority in Washington State issued a notice of construction order of approval for the portable source after July 1, 2010, identifying the emission units as a portable source." This General Order of Approval not only combines the portable and stationary general orders, it satisfies the new requirements contained in WAC 173-400-036, and the requirements f or issuing a General Order of Approval as discussed in WAC 173-400-560.

The six main elements of this Technical Support Document (TSD) are: (1) combining the portable and stationary general orders, (2) updates to the General Order to be consistent with the revised rule (Chapter 173-400 WAC), (3) revised Best Available Control Technology (BACT) review, (4) review of ambient impacts analysis, (5) review of approval conditions, and (6) editorial language updates to the Findings and Approval Conditions.

3. BACT

An inquiry was sent to all of the local air authorities in the state of Washington to verify current BACT for rock crushers. Replies were received from the Olympic Region Clean Air Agency (ORCAA), the Puget Sound Clean Air Agency (PSCAA), and the Southwest Clean Air Agency (SWCAA). Basically, 2011 BACT for portable rock crushers is the same as 2006 BACT. The pollutants of concern are particulate matter (PM) also known as (aka) total suspended particulate (TSP), PM smaller than 10 microns in diameter (PM_{10}), and PM smaller than 2.5 in diameter ($PM_{2.5}$).

Table 1 below is a comparison of the emission factors considered for this General Order.

	Table 1. Emission Factors Comparison									
Activity	Pollutant	Emission Factor Selected controlled	ORCAA	SWCAA	SWCAA 2011 controlled	SCAPCA (2006) controlled	AP-42 TBL 11.19.2-2 (8/04) controlled	AP-42 (7/95) controlled		
, iourity		(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)		
Screening	PM	0.0022	0.008	0.032	0.0022	0.00087	0.0022	NI		
	PM ₁₀	0.00074	NI	0.015	0.00074	NI	0.00074	0.00084		
	PM _{2.5}	0.00005	NI	NI	0.00005	NI	0.00005	NI		
Fines	PM	0.0036	NI	NI	NI	NI	0.0036	NI		
Screening	PM ₁₀	0.0022	NI	NI	NI	NI	0.0022	NI		
	PM _{2.5}	0.0001	NI	NI	NI	NI	ND	NI		
Product	PM	0.00014	4.8E-05	0.003	NI	0.0011	0.00014	NI		
Transfer	PM ₁₀	0.000046	NI	0.0014	NI	NI	0.000046	0.000048		
	PM _{2.5}	0.000013	NI	NI	NI	NI	0.000013	NI		
Primary	PM	0.0012	0.0007	NI	0.00014	NI	ND	NI		
Crusher	PM ₁₀	0.00054	NI	NI	0.000067	0.0024	ND	NI		
	PM _{2.5}	0.0001	NI	NI	0.000012	NI	ND	NI		
Secondary	PM	0.0012	0.0007	0.005	0.0012	NI	ND	NI		
Crusher	PM ₁₀	0.00054	NI	0.0024	0.00054	0.0024	ND	NI		
	PM _{2.5}	0.0001	NI	NI	0.0001	NI	ND	NI		
Tertiary	PM	0.0012	NI	NI	0.0012	NI	0.0012	NI		
Crusher	PM ₁₀	0.00054	NI	NI	0.00054	0.0024	0.00054	0.00059		
	PM _{2.5}	0.0001	NI	NI	0.0001	NI	NI	NI		
Truck	PM	NI	0.0001	0.003	0.00014	NI	NI	NI		
Loading	PM ₁₀	0.000016	NI	0.0014	0.000046	0.000761	0.000016	NI		
	PM _{2.5}	NI	NI	NI	0.000013	NI	NI	NI		
	•		NI=no informa	ation	ND=non	detect				

Several of the emission factors from the SWCAA permits were different from those selected as BACT for this General Order. SWCAA's emission factors for particulate from the primary and secondary crushers were up to an order of magnitude lower than the emission factors used by Ecology. It is logical that emissions of PM aka TSP and PM_{10} would be greater when crushing smaller aggregate. Ecology could not verify this assumption, so we chose to be conservative and use the larger emission factors presented for primary, secondary, and tertiary crushing. The development of the SWCAA emission factors was based upon the following statement in the SWCAA background document:

Eile Edit View Window	lorse 11-2965 TSD.PDF - Adobe Reader Help			_ @ X ×
	 Tomore and the second second	r r r	🖻 🐼 🛃	Comment
■ 4 ⊘	Pioneer FT4250 Impact Crusher Engine (nonroad engine)	1	Ultra-low sulfur diesel, EPA Tier 3 Certification	
5	Screen-It Engine (stationary engine)	1	Ultra-low sulfur diesel, EPA Tier 2 Certification	N/A
issions to the iculate matter ionary and no <u>Crushin</u> through factors t factors PM fact PM ₁₀ sp of 12:1	S DETERMINATION e ambient atmosphere from the equipment and activit r (PM) from rock crushing and handling operations an onroad diesel-fired engines. g and Screening Operations. Potential emissions put of 200,000 tons per year and emission factors f for all stages except primary crushing are 'controlled for primary crushing are taken from the 1/95 version for for primary crushing. An 'uncontrolled' factor for which is based on the tested PM to PM _{2.5} ratio for efficiency of 80% was applied to the primary crushin	d NO _x , C from c rom EPA factors f n of the t or PM ₁₀ v or for PM tertiary c	CO, VOC, SO ₂ , and PM from operations of the solution of the	n aggregate). Emission e. Emission incontrolled' tio of PM to o PM _{2.5} ratio the table. A
hnical Suppor Horse Group 8.50 x 11.00 in				tion CL-1933 CAA 11-2965

All of the portable rock crusher permits reviewed required the use of wet suppression to achieve the controlled emission factors. BACT for controlling emissions of PM (aka TSP)/ $PM_{10}/PM_{2.5}$ from portable rock crushing operations has been selected to be wet suppression control technology, which is essentially water spray nozzles or fog bars that result in reduced emissions of PM.

At each one of these transfer points, screening operation or crushing operation opacity will be limited to 10 percent, or less, when measured by 40 CFR 60 Appendix A, Method 9.

For haul roads, BACT has been selected to be Best Management Practices in accordance with the elements in the Fugitive Dust Control Plan (FDCP). Effort should be taken to limit the amount of visible emissions leaving the site. Emissions of opacity from haul roads should be minimized to reduce the impact of the haul road on the properties adjacent to the site. Ecology is not requiring the source to monitor haul road emissions using EPA Method 9. Rather, we believe that the source can "self-monitor" and follow the requirements outlined in the FDCP. Not following the FDCP may be a justification for enforcement by the appropriate regional office. The attached FDCP includes elements such as watering access roads.

Please note that this BACT determination is identical to the BACT determination included in the June 8, 2006, TSD with the exception that $PM_{2.5}$ has now been identified as a pollutant of concern.

4. REVIEW OF EXISTING APPROVAL CONDITIONS

The original stationary and portable rock crusher general orders were used as a template for creating this combined General Order. We changed the appearance and layout of the General Order of Approval to be consistent with current practices. Changes to the Findings section are intended to aid the permittee in understanding the General Order of Approval. They are not enforceable as a practicable matter.

Specifically, the following changes have been made:

Revise the Findings section to be consistent with current permitting practices. This includes:

- a) A new header.
- b) Removal of registration requirement. A source still must register even though it is no longer discussed in the Findings section of the General Order.
- c) Identification of pollutants of concern removed and placed in the TSD.
- d) BACT discussion removed and placed in the TSD.
- e) Emission estimates removed and placed in the TSD.
- f) A statement about operation of up to a year has been added.
- g) A discussion about nonroad engines has been added.
- h) A discussion about the process to gain coverage under the General Order has been clarified.

Revise the Approval Conditions section to be consistent with current permitting practices. This includes:

- a) The language in old Approval Condition 1 has been updated. The maximum annual production has been reduced from 1.5 million tons of material per year to one million tons per year.
- b) The requirement to follow the FDCP has been relocated to Approval Condition 1.
- c) A discussion about locating longer than one year has been inserted into Approval Condition 1.
- d) The distance to the property line has been relocated to Approval Condition 1.
- e) Additional Restrictions for Operation of a Stationary Rock Crusher section has been added.
- f) Additional Restrictions for Operation of a Portable Rock Crusher section has been added.
- g) Old Approval Condition 3 requires a portable rock crusher to be located in a county under the jurisdiction of Ecology. That approval condition has been removed so that this

General Order could be used in other areas of the state as part of portable source relocation allowed in WAC 173-400-036.

- h) The language associated with the O&M manual has been updated.
- i) General conditions have been updated to be consistent with current permitting practices.
- j) Several editorial changes such as changing "shall" to "must" have been made to the document.
- k) The FDCP has been updated.

5. EMISSIONS

In the 2006 analysis, Ecology was not required to evaluate $PM_{2.5}$. For this General Order, Ecology quantified and evaluated emissions of PM aka TSP, PM_{10} , and $PM_{2.5}$. The emissions presented below were calculated from a rock crusher consisting of four transfer points, four screens, a primary crusher, a secondary crusher, a tertiary crusher, truck loading, and unpaved roads. Some of the emission units are classified as fugitive but were quantified for this analysis. The following table presents the maximum allowable emissions under this General Order.

Table 2. Maximum Allowable Emissions								
Emission Unit	PM al	a TSP	PI	M ₁₀	PN	N _{2.5}		
Emission Unit	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		
Transfer Points	0.19	0.16	0.06	0.05	0.02	0.02		
Screens	3.11	2.59	1.09	0.91	0.07	0.06		
Crushers	0.94	0.78	0.42	0.35	0.08	0.07		
Truck Loading	-	-	0.01	0.01	-	-		
Total	4.24	3.53	1.59	1.32	0.16	0.14		

Emissions are presented in terms of pounds per hour (lb/hr) and tons per year (tpy). The estimates are based upon the limits contained in the General Order. For lb/hr, the emissions are based upon 14,400 tons of material processed in a day. For tpy, the emissions are based upon the facility processing 1,000,000 tons of material in a year.

6. NSPS/NESHAP/MACT

This General Order of Approval complies with all New Source Performance Standards (NSPS), National Emission Standards for Hazardous Air Pollutants (NESHAPs), and Maximum Achievable Control Technology (MACT) requirements.

7. AMBIENT IMPACT ANALYSIS

A screening air dispersion model (BEE-Line AerScreen 2.00) was used to evaluate the impacts against the Ambient Air Quality Standards (AAQS). The model shows that there is no state or federal AAQS exceeded. The fugitive emissions associated with the haul road were not included in the analysis as allowed by the October 27, 2009 guidance (see Appendix E of this TSD).

Pages 16–18 of this TSD are a copy of the Excel spreadsheets used to evaluate AAQS standards. The AAQS are shown in Table 3.

Table 3. AAQS							
Pollutant	Averaging NAAQS Time (µg/m ³		WAAQS (µg/m³)				
PM (aka TSP)	Annual		60				
FIVI (and ISF)	24-hr		150				
	Annual		50				
PM ₁₀	24-hr	150	150				
	Annual	15					
PM _{2.5}	24-hr	35					

Table 4 is the calculated background for Washington State.

Table 4. Background							
Pollutant	Averaging Time	Background (µg/m³)					
PM (aka TSP)	Annual	20					
FIVI (and ISF)	24-hr	60					
PM ₁₀	Annual	13					
FIVI ₁₀	24-hr	28					
PM _{2.5}	Annual	7					
F 1V12.5	24-hr	21					

Table 5 is the highest modeled ambient concentrations at the fence line plus background compared to the AAQS.

Table 5. AAQS Analysis								
Pollutant	Averaging Time	Emissions (µg/m³)	AAQS (µg/m³)					
PM (aka TSP)	Annual	34.78	60					
FIVI (aka 13F)	24-hr	148.66	150					
DM	Annual	18.53	50					
PM ₁₀	24-hr	61.20	150					
DM	Annual	7.57	15					
PM _{2.5}	24-hr	21.57	35					

8. CONCLUSION

Ecology's Air Quality Program finds that this evaluation meets all the requirements of New Source Review.

For more information, please contact:

Richard B. Hibbard, P.E. Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 Phone: (360) 407-6896 Fax: (360) 407-7534 <u>richard.hibbard@ecy.wa.gov</u>

9. ACRONYMS AND ABBREVIATIONS

AAQS	Ambient Air Quality Standard
aka	Also known as
BACT	Best Available Control Technology
Ecology	Washington State Department of Ecology
FDCP	Fugitive Dust Control Plan
lb/hr	Pound(s) per hour
MACT	Maximum Achievable Control Technology
NAAQS	National Ambient Air Quality Standard
NESHAP	National Emission Standards for Hazardous Air Pollutants
NSPS	New Source Performance Standards
ORCAA	Olympic Region Clean Air Agency
PM	Particulate matter (aka TSP)
PM_{10}	PM smaller than 10 microns in diameter
PM _{2.5}	PM smaller than 2.5 microns in diameter
PSCAA	Puget Sound Clean Air Agency
SWCAA	Southwest Clean Air Agency
tpy	Tons per year
TSD	Technical Support Document
TSP	Total Suspended Particulate (aka PM)
WAAQS	Washington Ambient Air Quality Standard
WAC	Washington Administrative Code

APPENDIX A. EMISSIONS CALCULATION

Rock Crusher numbers	
Tons of Material per year	
1,000,000	

AP42 Section 11.19 2-2

15	U	IVIa	lene	ai p	ຕັງ	/ea	
1	,00	0,0	00				

12/1/2011

		Tons	Uncontrolled	Controlled	Uncontrolled	Controlled
	D 11 ()	of Material (year)	(11.74	(11μ)		(11 /1)
Activity	Pollutant	(year)	(lb/ton)	(lb/ton)	(lb/hr)	(lb/hr)
	PM _{2.5}	1,000,000	N/A	0.000013	N/A	0.001484
Product	PM	1,000,000	0.003	0.00014	0.342465753	0.015982
Transfer	PM_{10}	1,000,000	0.0011	0.000046	0.125570776	0.005251
	PM _{2.5}	1,000,000	N/A	0.00005	N/A	0.005708
Screening	PM	1,000,000	0.025	0.0022	2.853881279	0.251142
	PM_{10}	1,000,000	0.0087	0.00074	0.993150685	0.084475
	PM _{2.5}	700000	N/A	0.0001	N/A	0.007991
Primary	PM	700000	0.0054	0.0012	0.431506849	0.095890
Crusher	PM_{10}	700000	0.0024	0.00054	0.191780822	0.043151
	PM _{2.5}	700000	N/A	0.00005	N/A	0.003995
	PM	700000	0.025	0.0022	1.997716895	0.175799
Screening	PM_{10}	700000	0.0087	0.00074	0.695205479	0.059132
	PM _{2.5}	700000	N/A	0.000013	N/A	0.001039
Product	PM	700000	0.003	0.00014	0.239726027	0.011187
Transfer	PM_{10}	700000	0.0011	0.000046	0.087899543	0.003676
	PM _{2.5}	525000	N/A	0.0001	N/A	0.005993
Secondary	PM	525000	0.0054	0.0012	0.323630137	0.071918
Crusher	PM_{10}	525000	0.0024	0.00054	0.143835616	0.032363
	PM _{2.5}	525000	N/A	0.00005	N/A	0.002997
	PM	525000	0.025	0.0022	1.498287671	0.131849
Screening	PM_{10}	525000	0.0087	0.00074	0.52140411	0.044349
	PM _{2.5}	525000	N/A	0.000013	N/A	0.000779
Product	PM	525000	0.003	0.00014	0.179794521	0.008390
Transfer	PM ₁₀	525000	0.0011	0.000046	0.065924658	0.002757
	PM _{2.5}	78750	N/A	0.0001	N/A	0.000899
Tertiary	PM	78750	0.0054	0.0012	0.048544521	0.010788
Crusher	PM ₁₀	78750	0.0024	0.00054	0.021575342	0.004854
	PM _{2.5}	78750	N/A	N/A	N/A	N/A
Fines	PM	78750	0.3	0.0036	2.696917808	0.032363
screening	PM ₁₀	78750	0.072	0.0022	0.647260274	0.019777

	PM _{2.5}	78750	N/A	0.000013	N/A	0.000117
Product	PM	78750	0.003	0.00014	0.026969178	0.001259
Transfer	PM_{10}	78750	0.0011	0.000046	0.009888699	0.000414
	PM _{2.5}	1000000	N/A	N/A	N/A	N/A
Truck	PM	1000000	N/A	N/A	N/A	N/A
Loading	PM_{10}	1000000	0.000016	N/A	N/A	0.00182648
	PM _{2.5}	N/A	N/A	N/A	N/A	N/A
Unpaved	PM	N/A	N/A	N/A	N/A	1.4
Roads	PM_{10}	N/A	N/A	N/A	N/A	0.4
			PM	lb/hr	10.64	2.21
			PM_{10}	lb/hr	3.51	0.70
	TOTAL		PM _{2.5}	lb/hr	N/A	0.0310
			PM	ton/yr	4.57	9.66
			PM_{10}	ton/yr	15.35	3.07
			PM _{2.5}	ton/yr	N/A	0.14

		Unpaved Roads			PM ¹⁰		
Source	AP-42 13 2	AP-42 13.2.2-1		by Rich Hibbard			
		December 2003			6/7/2011		
$E = k(s/12)^{a}(W/3)$) ^b						
E= emissions in lb	I ∕Vehicle Miles Tr	aveled (VM	T)				
k= constant, for in	dustrial roads			1.5	PM ¹⁰		
s= surface materia	al silt content			4.8			
a= constant for inc	dustrial roads			0.9	PM ¹⁰		
W= mean vehicle	weight (tons)	loaded	80000	lbs	unloaded	40000	lbs
		Joaueu	00000	0.45		40000	103
b= constant for inc	dustrial roads			0.45	PIVI		
E (PM ¹⁰)	1 853298	pounds pe	r vehical mi	le travi	ed		
	1.000200					the truck is	loaded
Assumptions:							
weight of soil	2.05	tons/cubic	yard				
1 Truck		cubic yards					
length of haul road		1/8 mile loa	aded and 1/	8 mile	un-loaded		
Water control	85%	effective					
Tons of material p	processed	Pounds of		Tons	of	# trucks/hr	lb/hr
	locessed	PM10 per year		PM10 per year			10/11
400000		13,561		6.8		22.3	1.5
3000000		10,171		5.1		16.7	1.2
2000000		6,780		3.4		11.1	0.8
		,					
1500000		5,085		2.5		8.4	0.6
1000000		3,390		1.7		5.6	0.4
14400		N/A		N/A		29.3	2.0

APPENDIX B. UNPAVED ROADS CALCULATIONS

APPENDIX C. AERSCREEN RESULTS

11:03:22

AERSCREEN 11126 / AERMOD 1110

06/07/11

TITLE: VOLUME RC 6-7-11

SOURCE EMISSION RATE:1.0000 g/s7.937 lb/hrVOLUME HEIGHT:5.00 meters16.40 feetINITIAL LATERAL DIMENSION:25.00 meters82.02 feetINITIAL VERTICAL DIMENSION:10.00 meters32.81 feetRURAL OR URBAN:RURAL

FLAGPOLE RECEPTOR HEIGHT: 1.40 meters 4.59 feet

INITIAL PROBE DISTANCE = 1000. meters 3281. feet

BUILDING DOWNWASH NOT USED FOR NON-POINT SOURCES

Zo ROUGHNESS 1-HR CONC DIST TEMPORAL SECTOR LENGTH (ug/m3) (m) PERIOD 1* 0.300 1454. 54.8 ANN

* = worst case flow sector

MIN/MAX TEMPERATURE: 255.4 / 310.0 (K)

MINIMUM WIND SPEED: 0.5 m/s

ANEMOMETER HEIGHT: 10.000 meters

SURFACE CHARACTERISTICS INPUT: USER ENTERED

ALBEDO:0.20BOWEN RATIO:2.00ROUGHNESS LENGTH:0.300 (meters)

METEOROLOGY CONDITIONS USED TO PREDICT OVERALL MAXIMUM IMPACT

YR MO DY JDY HR

10 02 06 6 01

H0 U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 BOWEN ALBEDO REF WS -2.51 0.057 -9.000 0.020 -999. 31. 5.8 0.300 2.00 0.20 1.00

HT REF TA HT

10.0 255.4 2.0

METEOROLOGY CONDITIONS USED TO PREDICT AMBIENT BOUNDARY IMPACT

YR MO DY JDY HR

10 02 06 6 01

H0 U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 BOWEN ALBEDO REF WS

-2.51 0.057 -9.000 0.020 -999. 31. 5.8 0.300 2.00 0.20 1.00 HT REF TA HT 10.0 255.4 2.0

DIST (m)	MAXIMUM 1-HR CONC (ug/m3)	D (m)	MAXIMUM IST 1-HR CONC (ug/m3)
54.75	1454.	550.00	377.1
75.00	1322.	575.00	364.2
100.00	1190.	600.00	352.1
125.00	1080.	625.00	340.7
150.00	985.8	650.00	330.0
175.00	904.9	675.00	319.9
200.00	834.6	700.00	310.4
225.00	773.0	725.00	301.4
250.00	718.7	750.00	292.8
275.00	670.6	775.00	284.7
300.00	627.7	800.00	277.0
325.00	589.3	825.00	269.7
350.00	554.7	850.00	262.7
375.00	523.4	875.00	256.1
400.00	495.0	900.00	249.7
425.00	469.1	925.00	243.6
450.00	445.4	950.00	237.8
475.00	423.6	975.00	232.2
500.00	405.8	1000.00	226.9
525.00	391.0		

MAXIMUM SCALED SCALED SCALED SCALED 1-HOUR 3-HOUR 8-HOUR 24-HOUR ANNUAL CALCULATION CONC CONC CONC CONC CONC (ug/m3) (ug/m3) (ug/m3) (ug/m3) (ug/m3) PROCEDURE _____ FLAT TERRAIN 1454. 1454. 1308. 872.2 145.4

DISTANCE FROM SOURCE 54.75 meters

 IMPACT AT THE

 AMBIENT BOUNDARY
 1454.
 1308.
 872.2
 145.4

DISTANCE FROM SOURCE 54.75 meters

APPENDIX D. NAAQS ANALYSIS

		Tons of Ma 1000000	terial per ye					
					PM2.5			PM2.5
Activity	Pollutant	Tons	uncontroled	controled	controled	uncontrole		controled
		of material	(lb/ton)	(lb/ton)	(lb/ton)	lb/hr	lb/hr	lb/hr
Product	PM	1,000,000	0.003	0.00014	0.000013	0.342466	0.015982	0.001484
Transfer	PM10	1000000	0.0011	0.000046		0.125571	0.005251	
Screening	PM	1000000	0.025	0.0022	0.00005	2.853881	0.251142	0.005708
	PM10	1000000	0.0087	0.00074		0.993151	0.084475	
Primary	PM	700000	0.0054	0.0012	0.0001	0.431507	0.09589	0.007991
Crusher	PM10	700000	0.0024	0.00054		0.191781	0.043151	
Screening	PM	700000	0.025	0.0022	0.00005	1.997717	0.175799	0.003995
	PM10	700000	0.0087	0.00074		0.695205	0.059132	
Product	PM	700000	0.003	0.00014	0.000013	0.239726	0.011187	0.001039
Transfer	PM10	700000	0.0011	0.000046		0.0879	0.003676	
Secondary	PM	525000	0.0054	0.0012	0.0001	0.32363	0.071918	0.005993
Crusher	PM10	525000	0.0024	0.00054		0.143836	0.032363	
Screening	PM	525000	0.025	0.0022	0.00005	1.498288	0.131849	0.002997
0	PM10	525000	0.0087	0.00074		0.521404	0.044349	
Product	PM	525000	0.003	0.00014	0.000013	0.179795	0.00839	0.000779
Transfer	PM10	525000	0.0011	0.000046		0.065925	0.002757	
Trtiary	PM	78750	0.0054	0.0012	0.0001	0.048545	0.010788	0.000899
Crusher	PM10	78750	0.0024	0.00054	0.0001	0.021575	0.004854	0.000000
Fines	PM	78750	0.3	0.0036		2.696918	0.032363	
screening	PM10	78750	0.072	0.0022	0	0.64726	0.019777	
Product	PM	78750	0.003	0.00014	0.000013	0.026969	0.001259	0.000117
Transfer	PM10	78750	0.003	0.000014	0.000015	0.009889	0.0001233	0.000117
Truck	PM	1000000	0.0011	0.000040		0.003003	0.000414	
Loading	PM10	1000000	0.000016			0.001826	0.001826	
Unpaved	PM	1000000	0.000010			0.001020	1.4	
Roads	PM10						0.4	
				PM	lb/hr	10.63944	0.806567	
				PM10	lb/hr	3.505322	0.302026	
				PM2.5	lb/hr			0.031002
				PM	ton/yr	46.60075	3.532763	
				PM10	ton/yr	15.35331	1.322874	
				PM2.5	ton/yr			0.135787
				PM	g/sec		0.101627	
				PM10	g/sec	0.441671	0.038055	0.000000
Eugitivo Do	ad amissions	oveluded per O	ctobor 27, 200	PM2.5	g/sec			0.003932
Fugliive Ro		excluded per O		road PM	g/sec	0	0	
				road PM1		0	0	
					- 3,000	Ŭ	0	
			TOTAL	PM	g/sec		0.101627	
				PM10	g/sec		0.038055	
				PM2.5	g/sec			0.003932

	Rock Crusher					
		annual				
distance	Unitless output ug/MEE3	uncontroled 0.101627 ug/MEE3 1 hr ave	-	Annual ave	NAAQS	
					24-hr NAA()	Annual NAAQS
55.00	1454.00	147.77	88.66	14.78	148.66	34.78
75.00	1322.00	134.35	80.61	13.44	140.61	33.44
100.00	1190.00	120.94	72.56	12.09	132.56	32.09
150.00	985.80	100.18	60.11	10.02	120.11	30.02
200.00	834.60	84.82	50.89	8.48	110.89	28.48
250.00	718.70	73.04	43.82	7.30	103.82	27.30
300.00	627.70	63.79	38.27	6.38	98.27	26.38
350.00	554.70	56.37	33.82	5.64	93.82	25.64
400.00	495.00	50.31	30.19	5.03	90.19	25.03
450.00	445.40	45.26	27.16	4.53	87.16	24.53
500.00	405.80	41.24	24.74	4.12	84.74	24.12

Rock Crusher

pm2.5 NAAQS=35 24-hr, 15 annual

distance	Unitless output ug/MEE3	uncontroled 0.003932 ug/MEE3 1 hr ave	-	Annual ave	24-NAAQS a	annual-NAAQS
55.00	1454.00	5.72	3.43	0.57	21.57	7.57
75.00	1322.00	5.20	3.12	0.52	21.52	7.52
100.00	1190.00	4.68	2.81	0.47	21.47	7.47
150.00	985.80	3.88	2.33	0.39	21.39	7.39
200.00	834.60	3.28	1.97	0.33	21.33	7.33
250.00	718.70	2.83	1.70	0.28	21.28	7.28
300.00	627.70	2.47	1.48	0.25	21.25	7.25
350.00	554.70	2.18	1.31	0.22	21.22	7.22
400.00	495.00	1.95	1.17	0.20	21.20	7.20
450.00	445.40	1.75	1.05	0.18	21.18	7.18
500.00	405.80	1.60	0.96	0.16	21.16	7.16

Rock Crusher	pm10
	NAAQS=150 24-hr, annual 50

distance	Unitless output ug/MEE3	uncontroled 0.038055 ug/MEE3 1 hr ave	d 24-hr ave	Annual ave 24-h	r NAAQS	annual NAAQS
55.00	1454.00	55.33	33.20	5.53	61.20	18.53
75.00	1322.00	50.31	30.19	5.03	58.19	18.03
100.00	1190.00	45.29	27.17	4.53	55.17	17.53
150.00	985.80	37.51	22.51	3.75	50.51	16.75
200.00	834.60	31.76	19.06	3.18	47.06	16.18
250.00	718.70	27.35	16.41	2.74	44.41	15.74
300.00	627.70	23.89	14.33	2.39	42.33	15.39
350.00	554.70	21.11	12.67	2.11	40.67	15.11
400.00	495.00	18.84	11.30	1.88	39.30	14.88
450.00	445.40	16.95	10.17	1.70	38.17	14.70
500.00	405.80	15.44	9.26	1.54	37.26	14.54

APPENDIX E. FUGITIVE EMISSIONS GUIDANCE

MEMORANDUM

TO: Air Quality Program Commercial and Industrial Permitting Staff

- FROM: Commercial and Industrial Steering Committee
- RE: Guidance on Evaluating Fugitive Emissions on NSR for Projects subject to Chapters 173-400 and 460 WAC's.
- DATE: October 27, 2009

Purpose

The purpose of this guidance is to clarify the steps that should be considered when evaluating fugitive emissions from projects subject to NSR in counties regulated by the Department of Ecology.

Background

Quantifying and modeling fugitive emissions of criteria and toxic air pollutants is quite complicated. This guidance does not change Ecology's current practice of quantifying fugitive emissions. What it does is add a step to verify the fugitive problem by including a peer review of the emission factors prior to permitting a project where any standards or trigger levels are exceeded.

Guidance:

Fugitive emissions for NSR actions will be processed as follows:

- Increases of fugitive emissions from toxic as well as criteria pollutant sources will be quantified as part of NSR.
- Increases of fugitive emissions will be modeled to determine their contribution as part of the ambient impact analysis.
- If increases of fugitive emissions appear to cause or contribute to a NAAQS exceedance or ASIL exceedance from modeling, a peer review by the Commercial/Industrial Work Group engineers will occur prior to including fugitive emissions in the NSR action.

Detail:

In performing the quantification step a preference shall be given to standard emission factors. If new or non-standard emission factors are used, this information should be peer reviewed by the Commercial/Industrial Work Group engineers.