

Technical Support Document for Portable and Stationary Concrete Batch Plants

General Order of Approval No. 11AQ-GO-02

December 6, 2011

TABLE OF CONTENTS

1.	SUMMARY	1
2.	PURPOSE OF THIS AMENDMENT	1
3.	EXISTING GENERAL ORDER	1
4.	BACT	3
5.	REVIEW OF EXISITING APPROVAL CONDITIONS	4
6.	EMISSIONS	5
7.	AMBIENT IMPACT ANALYSIS	6
8.	CONCLUSION	8
9.	ACRONYMS AND ABBREVIATIONS	9
APP	PENDIX A. EXCEL SPREADSHEET EVALUATING EMISSIONS 1	0
APP	PENDIX B. AERSCREEN ANALYSIS2	9
	LIST OF TABLES	
Tabl	le 1. Concrete Batch Plant, Applicability Criteria	2
Tabl	le 2. Criteria Pollutant Emissions	5
Tabl	le 3. Toxic Air Pollutants	6
Tabl	le 4. Taps Exceeding the SQER Compared to the ASILs	6
Tabl	le 5. National Ambient Air Quality Standards (NAAQS)	7
Tabl	le 6. Background Values	7
Tabl	le 7. Ambient Impact Levels	7

1. SUMMARY

This General Order of Approval supersedes 08-AQG-002 issued on June 18, 2008. Coverage under the old general order is still valid for stationary concrete batch plants but not portable concrete batch plants. Any new concrete batch plant wishing to gain coverage must comply with the requirements of this General Order. There are few sustentative differences between the old and new General Orders. The main difference is that this new general order satisfies the portable relocation requirements discussed below.

2. PURPOSE OF THIS AMENDMENT

On March 1, 2011, the Washington State Department of Ecology (Ecology) revised the General Regulation for Air Pollution Sources Chapter 173-400 Washington Administrative Code (WAC). There is a new section in the rule, Section 036 (Relocation of Portable Sources), which contains a number of relocation requirements. One of those requirements is that "a permitting authority in Washington State issued a notice of construction order of approval for the portable source after July 1, 2010, identifying the emission units as a portable source." This General Order of Approval satisfies the new requirements contained in WAC 173-400-036, and the requirements for issuing a General Order of Approval as discussed in WAC 173-400-560.

The five main elements of this Technical Support Document (TSD) are: (1) updates to the General Order to be consistent with the revised rule (Chapter 173-400 WAC), (2) Best Available Control Technology (BACT) review, (3) review of ambient impacts analysis, (4) review of approval conditions, and (6) editorial language updates to the Findings and Approval Conditions.

3. EXISTING GENERAL ORDER

The existing General Order was issued on June 18, 2008. No changes are being proposed to the production rates or emission limits. The following is a list of applicability criteria. This table was originally in the original General Order, but it has been modified to allow sources outside Ecology's jurisdiction to participate in the General Order of Approval.

Table 1.	Concrete Batch Plant, Applicability Criteria
Criterion	Limitation
Location in Washington	Any jurisdiction within which New Source Review requirements are regulated by Ecology's Air Quality Program. At the time of issuance of this General Order, this includes Adams, Asotin, Chelan, Columbia, Douglas, Ferry, Franklin, Garfield, Grant, Kittitas, Klickitat, Lincoln, Okanogan, Pend Oreille, San Juan, Stevens, Walla Walla, and Whitman Counties, or any other jurisdiction that participates in the relocation of portable sources allowed by WAC 173-400-066.
Eacility description	Permanent or portable facilities that make concrete for off-site use from sand, aggregate ¹ , Portland cement, mineral admixtures, and water. The ingredients are gravity fed through a weigh hopper. In an in-transit mixing plant, the weigh hopper drops the ingredients into mixer trucks (in-transit mixing). In a central mix plant, the weigh hopper drops the ingredients into a mixer that dumps the pre-mixed concrete into transit trucks (central mix).
Facility description	The concrete batch plant is not part of a new major stationary source or major modification to a major stationary source, which is subject to review under the Prevention of Significant Deterioration program, and the addition of the concrete batch plant to an existing source does not make the source subject to the Air Operating Permit (AOP) program or require a modification in an existing AOP permit.
	In-transit mix: Not greater than 150,000 tons per year (74,500 cubic yards) of concrete mixed per year.
Size	Central mix: Not greater than 495,000 tons per year (246,000 cubic yards) of concrete mixed per year.
	Located on a parcel of land that is greater than or equal to one-acre in size.
Docian	Facility may either produce truck-mixed or central-mixed concrete.
Design	May be stationary or portable.
Equipment	Mobile and stationary conveying equipment for loading sand, aggregate, cementitious material bins and silos, weight hopper, mixer (central mix), and truck charging station.

¹ Fine aggregate: Sand

Coarse aggregate: Gravel, crushed stone, or iron blast furnace slag.

Heavyweight aggregate: Barite, magnetite, limonite, ilmenite, iron, or steel.

Lightweight aggregate: Sintered clay, shale, slate, diatomaceous shale, perlite, vermiculate, slag pumice, cinders, or sintered fly ash.

4. BACT

State law and rule² defines BACT as "an emission limitation based on the maximum degree of reduction for each air pollutant subject to regulation under the Washington Clean Air Act emitted from or which results from any new or modified stationary source, which the permitting authority, on a case-by-case basis, taking into account energy, environmental and economic impacts and other costs, determines is achievable for such source or modification through application of production processes and available methods, systems, and techniques, including fuel cleaning, clean fuels, or treatment or innovative fuel combustion techniques for control of each pollutant."

Ecology uses the "top-down" process to determine what BACT is for notice of construction reviews. In the "top-down" analysis process, the applicant lists and ranks all potential pollutant control options from highest level of control (lowest emission rate) to the lowest (highest emission rate). Next, those emission control options that are technically infeasible are removed from the list of available controls. The highest level of control remaining is considered technically feasible to implement on the emission unit. An applicant may choose to demonstrate that the highest level of emissions control is not financially feasible (not cost-effective) to implement or has adverse environmental or energy impacts. In this case, the applicant evaluates the economic, environmental, and energy impacts of the next most stringent level of control until a level of control is demonstrated to be economically feasible.

In the case of this General Order of Approval Technical Support Document, there is no identified applicant. Thus, Ecology is responsible for providing this BACT technology analysis comparing the economic feasibility of several of the available emission control options available as add-on emission control technologies as part of our process to determine what BACT should be. A review of EPA's RACT/BACT/LAER Clearinghouse, the California Air Resources board, and discussions with Ecology regional office permitting staff indicated that permitting agencies were using EPA's AP-42 emission factors. Ecology has determined that the analysis performed in 2008 is still valid in 2011 and a discussion of the 2008 analysis is presented below.

There are at least five sources of particulate matter (PM) emissions, sometimes referred to as total suspended particulate (TSP) at concrete batch plants. They are maintaining aggregate and sand piles; moving sand and aggregate from the piles to the feed bins; loading the sand, aggregate, and cementitious material bins and silos; loading the concrete trucks (in-transit mixing) or the mixer (central mix); and on-site vehicle traffic. Maintaining aggregate and sand piles, moving sand and aggregate from the piles, and on-site vehicle traffic to the feed bins are sources of fugitive PM emissions. Loading the sand, aggregate, and cementitious material bins and silos cause PM emissions at the top of the bins, and are best characterized as point source emission. Loading the concrete trucks (in-transit mixing) or the mixer (central mix) has properties of both fugitive and point sources. After examining general and specific construction permits from Arizona, California, Idaho, Illinois, Indiana, Montana, North Carolina, New Mexico, South Carolina, Texas, the Puget Sound Clean Air Agency, the Southwest Clean Air Agency, and Ecology's Central and Eastern Regional Offices, Ecology found:

² RCW 70.94.030(7) and WAC 173-400-030(12).

- PM emissions from maintaining aggregate and sand piles, material transport, and on-site vehicle traffic are normally controlled by water spray.
- PM emissions from sand and aggregate bin loading are normally controlled by water spray.
- PM emissions from loading the cementitious material bin(s) is normally controlled by venting to a fabric filter (bag house).
- PM emissions from in-transit mixing plant truck filling are normally controlled by enclosing the drop chutes and weigh hopper to minimize wind effects, and dropping the concrete components through a flexible boot that fits into the truck mixer.
- For larger central mix plants, PM emissions from mixer filling are normally controlled by sucking up the PM-laden air in the vicinity of the mixer with a blower and venting it to the cement silo or an independent fabric filter.
- Toxic air pollutant emissions from concrete batch plants are controlled by the same methods used to control PM emissions.

5. REVIEW OF EXISITING APPROVAL CONDITIONS

The original concrete batch plant general order was used as a template for creating this General Order. We change the appearance and layout of the order of approval to be consistent with current practices. Changes to the Findings section are intended to aid the permittee in understanding the order of approval. They are not enforceable as a practicable matter.

Specifically, the following changes have been made:

Revise the Findings section to be consistent with current permitting practices. This included:

- a) A new header.
- b) A statement that the General Order supersedes 08-AQG-002.
- c) Removal of the tables and restating the Findings in narrative format.
- d) Removal of the SEPA discussion.
- e) A statement about nonroad engines was added.
- f) The rewording of several Findings.

Revise the Approval Conditions to be consistent with current permitting practices. This included:

- a) Removal of the tables and restating of the Approval Conditions in narrative format.
- b) Creation of an Operations and Emissions Limitations section.
- c) Creation of an Equipment Restriction section.
- d) Differentiating between portable and stationary operational requirements.
- e) The rewording of several Approval Conditions.
- f) Revisions to the Fugitive Dust Control Plan.

6. EMISSIONS

The emissions presented below were quantified based upon a concrete batch plant with aggregate, sand, cement, and cement supplement to silo delivery; two aggregate transfer points and two sand transfer points, weigh hopper loading, truck mixing, central mixing, and fugitive dust from haul roads. Multiple formulas and tables were available for selection of emission factors. They included emissions in lb/ton of concrete, lb/cubic yard of concrete, and two mathematical equations. Table 2 below presents the total projects emissions.

Table 2. Criteria Pollutant Emissions								
		Tı	uck Mix	(Central Mix			
	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}		
Point	ton/yr	4.54	1.91	0.20	3.08	2.22	0.06	
Source	lb/hr	19.88	8.39	0.88	13.50	9.72	0.28	
Fugitive	ton/yr	31.79	5.40		31.79	8.10		
Emissions	lb/hr	139.26	23.66		139.26	35.49		
TOTAL	ton/yr	36.33	7.32	0.20	34.88	10.32	0.06	
	lb/hr	159.14	32.05	0.88	152.76	45.21	0.28	

	Table 3. Toxic Air Pollutants							
Pollutant		Arsenic	Beryllium	Cadmium	Lead	Manganese	Total Phosphorus	Selenium
Averaging Period		Year	Year	Year	Year	24-hr	24-hr	24-hr
Central	lb/yr	1.32E-01	5.56E-02	4.65E-03	7.79E-01	1.17E+01	6.65	5.86E-02
Mix	lb/day	3.61E-04	1.52E-05	1.27E-06	2.14E-03	3.20E-02	1.82E-02	1.61E-04
Truck Mix	lb/yr	3.99E-02	1.68E-02	1.41E-03	2.36E-01	5.54	2.01	1.77E-02
TTUCK IVIIX	lb/day	1.09E-04	4.61E-05	5.73E-07	6.47E-04	9.69E-03	5.51E-03	4.86E-05
De Minimis	See averaging period	2.91E-03	4.00E-03	2.28E-03	1.00E+01	2.63E-04	1.31E-01	1.31E-01
SQER	See averaging period	5.81E-02	8.00E-02	4.57E-02	1.60E+01	5.26E-03	2.63	2.63E+00
Below De Minimis	(Yes or No)	No	No	No	Yes	No	Yes	Yes
Below SQER	(Yes or No)	No	Yes	Yes	N/A	No	N/A	N/A
Note: N/A is	s "not applica	ble" because	the pollutant	t is below the	de minimis le	evel.		

Emissions of arsenic, beryllium, cadmium, and manganese were in excess of the de minimis rates contained in WAC 173-460-150. When these four pollutants were compared to the Small Quantity Emission Rates (SQER), arsenic and manganese were retained for ambient modeling.

7. AMBIENT IMPACT ANALYSIS

A screening air dispersion model (BEE-Line AerScreen 2.00) was used to evaluate the impacts against the Ambient Air Quality Standards (AAQS). The fugitive emissions were included in the modeling analysis and all state and federal AAQS were below their standards. All toxic air pollutants were below their Acceptable Source Impact Levels (ASILs) as shown in Table 4 below.

Table 4. Taps Exceeding the SQER Compared to the ASILs				
Pollutant	Averaging Period	Maximum Concentration (μg/m³) (μg/m³)		Above ASIL (Yes or No)
Arsenic	Year	1.80E-06	3.03E-04	No
Manganese	24-hr	5.87E-05	4.00E-02	No

Table 5 lists the state and federal AAQS.

Table 5. National Ambient Air Quality Standards (NAAQS)					
Pollutant	Averaging Period	NAAQS Micrograms Per Cubic Meter (µg/m³) Primary	Washington State AAQS (μg/m³)		
PM (aka TSP)	Annual	N/A	60		
PIVI (aka 13P)	24-hr	N/A	150		
DM	Annual	N/A	50		
PM ₁₀	24-hr	150	150		
DM	Annual	15	N/A		
PM _{2.5}	24-hr	35	N/A		

Table 6 lists the empirically derived background values.³

Table 6. Background Values				
Pollutant	Averaging Period	Background (µg/m³)		
PM	Annual	20		
F IVI	24-hr	60		
PM ₁₀	Annual	13		
FIVI ₁₀	24-hr	28		
PM _{2.5}	Annual	7		
F 1V12.5	24-hr	21		

Table 7 compares the maximum ambient concentrations to the AAQS.

Table 7. Ambient Impact Levels					
Plant Type	Truck Mixing	Central Mix			
Size	150,000 tons concrete per year	495,000 tons concrete per year			
PM: 24-hr avg. plus background	60.25 μg/m ³	60.28 μg/m ³			
PM: 24-hr NAAQS	150 μg/m ³	150 μg/m ³			
PM: Annual impact plus background	20.25 μg/m³	20.28 μg/m³			
TSP: Annual WAAQS	60 μg/m ³	60 μg/m ³			
PM ₁₀ : 24-hr impact plus background	28.07 μg/m³	28.08 μg/m³			

³ These values were developed by the Department of Ecology Air Quality Program and are based upon data collected in Eastern Washington.

Table 7. Ambient Impact Levels					
Plant Type	Truck Mixing	Central Mix			
PM ₁₀ : 24-hr NAAQS	150 μg/m ³	150 μg/m ³			
PM ₁₀ : Annual impact plus background	13.07 µg/m³	13.08 µg/m³			
PM ₁₀ : Annual NAAQS	50 μg/m ³	50 μg/m ³			
PM _{2.5} : 24-hr impact plus background	21.0 μg/m ³	21.0 μg/m³			
PM _{2.5} : 24-hr NAAQS	35 μg/m ³	35 μg/m ³			
PM _{2.5} : Annual impact plus background	7.00 µg/m³	7.00 μg/m³			
PM _{2.5} : Annual NAAQS	15 µg/m ³	15 μg/m ³			

8. CONCLUSION

Ecology's Air Quality Program finds that this evaluation meets all the requirements of New Source Review.

For more information, please contact:

Richard B. Hibbard, P.E. Washington State Department of Ecology P.O. Box 47600 Olympia, WA 98504-7600 Phone: (360) 407-6896

Fax: (360) 407-7534

richard.hibbard@ecy.wa.gov

9. ACRONYMS AND ABBREVIATIONS

AAQS Ambient Air Quality Standard
ASIL Acceptable Source Impact Level

aka Also known as

AOP Air Operating Permit

BACT Best Available Control Technology

Ecology Washington State Department of Ecology

FDCP Fugitive Dust Control Plan

lb/hr Pound(s) per hour

NAAQS National Ambient Air Quality Standard

PM Particulate matter (aka TSP)

 PM_{10} PM smaller than 10 microns in diameter $PM_{2.5}$ PM smaller than 2.5 microns in diameter

SQER Small Quantity Emission Rate

tpy Tons per year

TSD Technical Support Document

TSP Total Suspended Particulate (aka PM)

WAAQS Washington Ambient Air Quality Standard

WAC Washington Administrative Code

APPENDIX A. EXCEL SPREADSHEET EVALUATING EMISSIONS

Concrete Batch Plant General Order Numerical analysis 08-AQG-02 Amendment 1 11/1/2011 Rich Hibbard 74500

246000

74,500 Truck Mix number of cubic yards of concrete equates to 149,745
246,000 Centrial Mix number of cubic yards of concrete equates to 494,460

Maximum Criteria Emissions

			Truck Mix			Centrial N
		PM	PM ₁₀	PM ₂₅	PM	PM ₁₀
Point source	tons/yr	4.54	1.91	0.20	3.08	2.22
	lb/hr	19.88	8.39	0.88	13.50	9.72
fugitive haul road tons/yr		31.79	5.40	-	31.79	8.10
	lb/hr	139.26	23.66	-	139.26	35.49
TOTAL	tons/yr	36.33	7.32	0.20	34.88	10.32
	lb/hr	159.14	32.05	0.88	152.76	45.21

Maximum Toxic Emissions

	Pollutant	Arsenic	Cadmium	Lead	Manganese	Total Phosphorus	Selenium
Averagir	ng period	year	year	year	24-hr	24-hr	24-hr
	lb/yr	3.58E-01	4.65E-03	7.79E-01	1.17E+01	6.65E+00	5.86E-02
Centrial Mix	lb/day	9.81E-04	1.27E-05	2.14E-03	3.20E-02	1.82E-02	1.61E-04
	lb/yr	1.08E-01	1.41E-03	2.36E-01	3.54E+00	2.01E+00	1.77E-02
Truck Mix	lb/day	2.97E-04	3.85E-06	6.47E-04	9.69E-03	5.51E-03	4.86E-05
De Minimis		2.91E-03	2.28E-03	1.00E+01	2.63E-04	1.31E-01	1.31E-01
SQER		5.81E-02	4.57E-02	1.60E+01	5.26E-03	2.63E+00	2.63E+00
Below DeMinimi	(Y or N)	No	No	Yes	No	Yes	Yes
Below SQER	(Y or N)	No	N/A	N/A	No	N/A	N/A
ASIL		3.03E-04			4.00E-02		
ax Modeled val	ug/m3	1.80E-06			5.87E-05	<u>[</u>	
Below ASIL	(Y or N)	Yes			Yes		

N/A means that the pollutant is below the deMinimis levels and an SEER compairson was not requ

Tons of concret Tons of concret

1ix
PM _{2.5}
0.06
0.28
-
-
0.06
0.28

Beryllium
year
5.56E-02
1.52E-04
1.68E-02
4.61E-05
4.00E-03
8.00E-02
No
Yes

Criteria Concrete Batch Plant Emissions 11/1/2011 By Rich Hibbard

Emission Factor Source	Emission Points	Emission Factor PM		
		lb/Ton o	concrete	
AD 40 TH 44 40 0		uncontroled	controled	
AP-42 Tbl 11.12-2 6/06 AP-42 Tbl 11.12-2	Aggregate Transfer	0.0069	-	
6/06 AP-42 Tbl 11.12-2	Sand Transfer	0.0021	-	
6/06 AP-42 Tbl 11.12-2	Cement Unloading to Silo	0.73	0.00099	
6/06 AP-42 Tbl 11.12-2	Cement supplement unloading to silo		0.0089	
6/06 AP-42 Tbl 11.12-2	Weigh Hopper loading	0.00392803	-	
6/06 AP-42 Tbl 11.12-2	Mixer loading (Centrial Mix)	0.08017097	0.00257893	
6/06	Truck Loading (Truck mixing) Unpaved Roads	0.15669781	0.01373559	

AP-42 Section 11.12 6/06 Equation 11.12-

E=k(0.0032)(U^a/M^b)+c

E is emission factor in lb/ton of cement

k = Particle size multiplierU = wind speed in mph

M = minimum moisture (% by weight)

a = exponent b = exponent c = constant

	Truck Mix
	Condition
9.2	Controlled
5	
	Uncontrolled

Central Mix
Condition
Controlled
Uncontrolled

			Truck and Ce
Emission Factor Source	Emission Points	Emission Factor PM	
		lb/yd ³ c	oncrete
		uncontroled	controled
AP-42 Tbl 11.12-5 6/06 AP-42 Tbl 11.12-5	Aggregate delivery to ground storage	0.0064	0.0064
6/06 AP-42 Tbl 11.12-5	Sand delivery to ground storage	0.0015	0.0015
6/06 AP-42 Tbl 11.12-5	Aggregate transfer to conveyor	0.0064	0.0064
6/06 AP-42 Tbl 11.12-5	Sand Transfer to conveyor	0.0015	0.0015
6/06 AP-42 Tbl 11.12-5	Aggregate Transfer	0.0064	0.0064
6/06 AP-42 Tbl 11.12-5	Sand Transfer	0.0015	0.0015
6/06 AP-42 Tbl 11.12-5	Cement Unloading to Silo	0.0002	0.0002
6/06 AP-42 Tbl 11.12-5	Cement supplement unloading to silo	0.0003	0.0003
6/06 AP-42 Tbl 11.12-5	Weigh Hopper loading	0.0079	0.0079
6/06 AP-42 Tbl 11.12-5	Mixer loading (Centrial Mix)	-	-
6/06	Truck Loading (Truck mixing) Unpaved Roads	-	-
AP-42 Section 11.12 6/06 Equation 11.12			
1	E=k(0.0032)(U ^a /M ^b)+c E is emission factor in lb/ton of cement k = Particle size multiplier U = wind speed in mph M = minimum moisture (% by weight) a = exponent b = exponent c = constant	9.2 5	Truck Mix Condition Controlled Uncontrolled
			Central Mix Condition Controlled

Uncontrolled

AP-42 Section 11.12

6/06 Table 11.12-8 METALs

IVIETALS		
	Arsenic	Beryllium
CAS		Ň/R
Cement silo filling w/fabric filter	4.24E-09	4.86E-10
Cement supplement filling w/fabric filter	1.00E-06	9.04E-08
Centrial mix batching w/fabric filter	4.3886E-08	N/R
Truck loading w/fabric filter	4.1169E-06	7.1122E-07

AP-42 Section 11.12

6/06 Table 11.12-8 Average batch is:

1865 lb course aggregate

1428 lb sand

491 lb cement

73 lb cement supplement

20 gallons of water

4024 total lb (one cubic yard of concrete)

2.01 ton per cubic yard

2000 lb/ton

Alternate Formulia Derived Emission Factors Truck Mix AP-42 Section 11.12 6/06 Equation 11.12-1

Emission PM		Emissior Pl		Emission PM		Emission PM ₂
lb/Ton co	oncrete	lb/Ton c	oncrete	lb/Ton co	oncrete	lb/Ton cc
uncontroled	controled	uncontroled	controled	uncontroled	controled	uncontroled
0.0033	-	-	-	-	-	-
0.00099	-	-	-	-	-	-
0.47	0.00034	-	-	-	-	-
1.1	0.0049	-	-	-	-	-
0.00229135	-	-	-	-	-	-
0.02186481	0.000771	0.1288	0.0022	0.0418	0.0013	0.0004
0.0434493	0.003686	0.9950	0.0898	0.2780	0.0359	0.0500

Pollutant	k	а	b	С
PM	0.8	1.75	0.3	0.013
PM10	0.32	1.75	0.3	0.0052
PM2.5	0.048	1.75	0.3	0.00078
PM	0.995			
PM10	0.278			
PM2.5	0.05			

Pollutant	k	а	b	С
PM	0.19	0.95	0.9	0.001
PM10	0.13	0.45	0.9	0.001
PM2.5	0.03	0.45	0.9	0.0002
PM	5.9	0.6	1.3	0.12
PM10	1.92	0.4	1.3	0.04
PM2.5	0.38	0.4	1.3	0

entral Mix			Alternate Formulia Derived Emission Factors Truck and Central Mix AP-42 Section 11.12 6/06 Equation 11			
Emission PM		P		Emissior PM	I ₁₀	Emission PM ₂
lb/yd ³ co	ncrete	lb/yd ³ c	oncrete	lb/yd ³ co	oncrete	lb/yd ³ co
uncontroled	controled	uncontroled	controled	uncontroled	controled	uncontroled
0.0031	0.0031	-	-	-	-	-
0.0007	0.0007	-	-	-	-	-
0.0031	0.0031	-	-	-	-	-
0.0007	0.0007	-	-	-	-	-
0.0031	0.0031	-	-	-	-	-
0.0007	0.0007	-	-	-	-	-
0.0001	0.0001	-	-	-	-	-
0.0002	0.0002	-	-	-	-	-
0.0038	0.0038	-	-	-	-	-
-	-	0.2589	0.0044	0.084	0.0025	0.0007
-	-	0.9950	0.0898	0.2780	0.0359	0.0500

Pollutant	k	а	b	С
PM	0.8	1.75	0.3	0.013
PM10	0.32	1.75	0.3	0.0052
PM2.5	0.048	1.75	0.3	0.00078
PM	0.995			
PM10	0.278			
PM2.5	0.05			

Pollutant	k	а	b	С
PM	0.19	0.95	0.9	0.001
PM10	0.13	0.45	0.9	0.001
PM2.5	0.03	0.45	0.9	0.0002

PM	5.9	0.6	1.3	0.12
PM10	1.92	0.4	1.3	0.04
PM2.5	0.38	0.4	1.3	0

Cadmium	Total Chromium	Lead	Manganese	Nickel	Total Phosphorus	Selenium
7440-43-9	N/R			N/R	7723-14-0	
ND	N/R	1.09E-08	1.17E-07	N/R	ND	ND
1.98E-10	N/R	5.20E-07	2.56E-07	N/R	3.54E-06	7.24E-08
4.8554E-09	N/R	2.50295E-07	2.59E-05	N/R	8.21E-06	ND
6.1958E-08	N/R	1.05E-05	1.42E-04	N/R	8.41E-05	7.73E-07

lb/ton of material loaded

- = No CAS # N/R = Not Regulated ND = Non Detect

Factor

2.5

ncrete

controled

- -
- _
- _
- _
- -
- 0.0003
- 0.0054

12-1

Factor

2.5

ncrete

controled

- -
- _
- _
- _
- _
- _
- _
- _
- 0.0005
- 0.0054

Criteria Concrete Batch Plant Emissions 11/1/2011 By Rich Hibbard

			PN	Л
			lb/ton co	oncrete
			Uncontroled	Controled
Truck Mix	Aggregate Transfer		0.0069	-
	Sand Transfer		0.0021	-
	Cement Unloading to	Silo	0.73	0.00099
	Cement supplement u	nloading to silo	3.14	0.0089
	Weigh Hopper loading	1	0.003928	-
	Mixer loading (Centria	Mix)	0.1288	0.0026
	Truck Loading (Truck	mixing)	0.9950	0.0137
		•		
		(lb/ton concrete)	4.0118	0.0125
	Total Centrial Mix	ton/yr	991.83	3.08
		gram/sec	28.532	0.089
		(lb/ton concrete)	4.877928	0.023626
	Total Truck Mix	ton/yr	365.22	1.77
		gram/sec	10.506	0.051

			PN	Л
			lb/yd ³ co	ncrete
			Uncontroled	Controled
Truck and Centrial Mix	Aggregate delivery to	ground storage	0.0064	0.0064
	Sand delivery to groun	d storage	0.0015	0.0015
	Aggregate transfer to	conveyor	0.0064	0.0064
	Sand Transfer to conv	eyor	0.0015	0.0015
	Aggregate Transfer		0.0064	0.0064
	Sand Transfer		0.0015	0.0015
	Cement Unloading to S	Silo	0.0002	0.0002
	Cement supplement u	nloading to silo	0.0003	0.0003
	Weigh Hopper loading		0.0079	0.0079
	Mixer loading (Centrial	Mix)	0.2589	0.0044
	Truck Loading (Truck	mixing)	0.9950	0.0898
	-			
		(lb/yd³ concrete)	0.2910	0.0365
	Total Centrial Mix	ton/yr	35.80	4.49
		gram/sec	1.030	0.129
		(lb/yd³ concrete)	1.0271	0.121868
	Total Truck Mix	ton/yr	38.26	4.54
		gram/sec	1.101	0.131

		Arsenic	Cadmium	
	Averaging period	year	year	
Metals	Cement silo filling w/fabric filter	4.24E-09	ND	
	Cement supplement filling w/fabric filter	0.000001	1.98E-10	
	Centrial mix batching w/fabric filter	4.389E-08	4.86E-09	

Modeling Results 11/1/2011 By Rich Hibbard

Bee-Line AERSCREEN Version 11126

1 g/sec	Area source Emission Rate
0.00247 g/(s-m2)	Area emission Rate
10 m	Area Height
63.6 m	Area source Long side
63.6 m	Area source short side
3 m	Inital Vertical dimension
1.4 m	Flagpole height
273.15 K	min temp
305.4 K	max temp
0.5 m/s	min wind speed
10 m	anemometer height
0.2	Albedo
2	Bowen Ratio
0.3	Surface roughness
67.01 M	MAX CONCENTRATION
1413 ug/m ³	MAX 1-HR
1413 ug/m ³	MAX 24-HR
1413 ug/m ³	MAX ANNUAL
557.4 ug/m3	1 m
976.4 ug/m3	25 m
1305 ug/m3	50 m
1387 ug/m3	75 m
1145 ug/m3	100 m
992 ug/m3	125 m
773 ug/m3	150 m
674 ug/m3	175 m
633 ug/m3	200 m
370 ug/m3	E00
242/2	500 m
342 ug/m3	500 m 1000 m

Concrete Batch	pm
Truck Mix	NAAQS=150 24-hr, 60 annual

		point	fugitive	emissions		
	multiplier	0.130590	0.61	1.83E-04		
	output	ug/MEE3				
	ug/MEE3	1 hr ave	24-hr ave	Annual ave	NAAQS	
distance	concentration				24-hr NAA(A	Annual NAAQS
67.01	1413.00	0.26	0.26	0.26	60.26	20.26
75.00	1387	0.25	0.25	0.25	60.25	20.25
100.00	1145	0.21	0.21	0.21	60.21	20.21

125.00	992	0.18	0.18	0.18	60.18	20.18
150.00	773	0.14	0.14	0.14	60.14	20.14
175.00	674	0.12	0.12	0.12	60.12	20.12
200.00	633	0.12	0.12	0.12	60.12	20.12
500.00	370	0.07	0.07	0.07	60.07	20.07
1000.00	342	0.06	0.06	0.06	60.06	20.06

Concrete Batch Truck Mix pm10 NAAQS=150 24-hr, annual 50

	multiplier	point 0.055086	fugitive 0.1554	emissions 5.20E-05			
	output ug/MEE3	ug/MEE3 1 hr ave	24-hr ave	Annual ave	24-hr NAA	annual NAAQS	
distance	concentration						
67.01	1413.00	0.07	0.07	0.07	28.07	13.07	
75.00	1387.00	0.07	0.07	0.07	28.07	13.07	
100.00	1145.00	0.06	0.06	0.06	28.06	13.06	
125.00	992.00	0.05	0.05	0.05	28.05	13.05	
150.00	773.00	0.04	0.04	0.04	28.04	13.04	
175.00	674.00	0.04	0.04	0.04	28.04	13.04	
200.00	633.00	0.03	0.03	0.03	28.03	13.03	
500.00	370.00	0.02	0.02	0.02	28.02	13.02	
1000.00	342.00	0.02	0.02	0.02	28.02	13.02	

Concrete Batch Truck Mix

pm2.5 NAAQS=35 24-hr, 15 annual

		point	fugitive	emissions		
	multiplier	0.005772	0.02	5.27E-06		
	output	ug/MEE3				
	ug/MEE3	1 hr ave	24-hr ave	Annual ave	24-NAAQS	annual-NAAQS
distance	concentration					
67.01	1413.00	0.01	0.01	0.01	21.01	7.01
75.00	1387.00	0.01	0.01	0.01	21.01	7.01
100.00	1145.00	0.01	0.01	0.01	21.01	7.01
125.00	992.00	0.01	0.01	0.01	21.01	7.01
150.00	773.00	0.00	0.00	0.00	21.00	7.00
175.00	674.00	0.00	0.00	0.00	21.00	7.00
200.00	633.00	0.00	0.00	0.00	21.00	7.00
500.00	370.00	0.00	0.00	0.00	21.00	7.00
1000.00	342.00	0.00	0.00	0.00	21.00	7.00

	Concrete Batch			pm			
	Centrial mix		NAAQS=150 24-hr, 60				
		point	fugitive	emissions			
	multiplier	0.129058	0.91	2.58E-04			
	output	ug/MEE3					
	ug/MEE3	1 hr ave	24-hr ave	Annual ave	NAAQS		
distance	concentration				24-hr NAA(Annual NAAQS	3
67.01	1413.00	0.36	0.36	0.36	60.36	20.36	
75.00	1387.00	0.36	0.36	0.36	60.36	20.36	
100.00	1145.00	0.30	0.30	0.30	60.30	20.30	
125.00	992.00	0.26	0.26	0.26	60.26	20.26	
150.00	773.00	0.20	0.20	0.20	60.20	20.20	
175.00	674.00	0.17	0.17	0.17	60.17	20.17	
200.00	633.00	0.16	0.16	0.16	60.16	20.16	
500.00	370.00	0.10	0.10	0.10	60.10	20.10	
1000.00	342.00	0.09	0.09	0.09	60.09	20.09	

Concrete Batch	pm10
Centrial Mix	NAAQS=150 24-hr, annual 50

	multiplier output		fugitive 0.233099	emissions 7.34E-05		
	ug/MEE3	1 hr ave	24-hr ave	Annual ave	24-hr NAA	annual NAAQS
distance	concentration					
67.01	1413.00	0.10	0.10	0.10	28.10	13.10
75.00	1387.00	0.10	0.10	0.10	28.10	13.10
100.00	1145.00	0.08	0.08	0.08	28.08	13.08
125.00	992.00	0.07	0.07	0.07	28.07	13.07
150.00	773.00	0.06	0.06	0.06	28.06	13.06
175.00	674.00	0.05	0.05	0.05	28.05	13.05
200.00	633.00	0.05	0.05	0.05	28.05	13.05
500.00	370.00	0.03	0.03	0.03	28.03	13.03
1000.00	342.00	0.03	0.03	0.03	28.03	13.03

Concrete Batch
Centrial Mix

pm2.5 NAAQS=35 24-hr, 15 annual

	multiplier output	0.001858 ug/MEE3	0.02	4.30E-06		
	ug/MEE3	1 hr ave	24-hr ave	Annual ave	24-NAAQS	annual-NAAQS
distance	concentration					
67.01	1413.00	0.01	0.01	0.01	21.01	7.01
75.00	1387.00	0.01	0.01	0.01	21.01	7.01
100.00	1145.00	0.00	0.00	0.00	21.00	7.00
125.00	992.00	0.00	0.00	0.00	21.00	7.00
150.00	773.00	0.00	0.00	0.00	21.00	7.00
175.00	674.00	0.00	0.00	0.00	21.00	7.00
200.00	633.00	0.00	0.00	0.00	21.00	7.00
500.00	370.00	0.00	0.00	0.00	21.00	7.00
1000.00	342.00	0.00	0.00	0.00	21.00	7.00

Concrete Batch
Centrial Mix
ASIL=
Arsenic
3.03E-04 annual ave

		point	fugitive	emissions
	multiplier	0.000005	0.00	1.27E-09
	output	ug/MEE3		
	ug/MEE3	1 hr ave	24-hr ave	Annual ave
distance	concentration			
67.01	1413.00	1.80E-06	1.80E-06	1.80E-06
75.00	1387.00	1.77E-06	1.77E-06	1.77E-06
100.00	1145.00	1.46E-06	1.46E-06	1.46E-06
125.00	992.00	1.26E-06	1.26E-06	1.26E-06
150.00	773.00	9.84E-07	9.84E-07	9.84E-07
175.00	674.00	8.58E-07	8.58E-07	8.58E-07
200.00	633.00	8.06E-07	8.06E-07	8.06E-07
500.00	370.00	4.71E-07	4.71E-07	4.71E-07
1000.00	342.00	4.35E-07	4.35E-07	4.35E-07

Concrete Batch
Truck mix

ASIL=

Arsenic

3.03E-04 annual ave

point fugitive emissions multiplier 0.000002 3.86E-10 0.00 output ug/MEE3 ug/MEE3 1 hr ave 24-hr ave Annual ave distance concentration 67.01 1413.00 5.45E-07 5.45E-07 5.45E-07

	125.00	992.00	3.83E-07	3.83E-07	3.83E-07
•	150.00	773.00	2.98E-07	2.98E-07	2.98E-07
	175.00	674.00	2.60E-07	2.60E-07	2.60E-07
	200.00	633.00	2.44E-07	2.44E-07	2.44E-07
	500.00	370.00	1.43E-07	1.43E-07	1.43E-07
	1000.00	342.00	1.32E-07	1.32E-07	1.32E-07

Concrete Batch Centrial Mix

ASIL=

Manganese 4.00E-02 24-hr ave

	multiplier	point 0.000168	fugitive 0.00	emissions 4.15E-08
	output ug/MEE3	ug/MEE3 1 hr ave	24 hr ave	Annual ave
distance	concentration	I III ave	24-III ave	Allilual ave
67.01	1413.00	5.87E-05	5.87E-05	5.87E-05
75.00	1387.00	5.76E-05	5.76E-05	5.76E-05
100.00	1145.00	4.76E-05	4.76E-05	4.76E-05
125.00	992.00	4.12E-05	4.12E-05	4.12E-05
150.00	773.00	3.21E-05	3.21E-05	3.21E-05
175.00	674.00	2.80E-05	2.80E-05	2.80E-05
200.00	633.00	2.63E-05	2.63E-05	2.63E-05
500.00	370.00	1.54E-05	1.54E-05	1.54E-05
1000.00	342.00	1.42E-05	1.42E-05	1.42E-05

Concrete Batch
Truck mix

ASIL=

Manganese 4.00E-02 24-hr ave

multiplier	point 0.000051	fugitive 0.00	emissions 1.26E-08
output	ug/MEE3		
ug/MEE3	1 hr ave	24-hr ave	Annual ave
 concentration			

distance concentration

05.05 4.705.05 4.705.05

			Unpaved F	Roads		PM^{10}		
			Shparout			1111		
Source		AP-42 13.2	.2-1	by Rich Hil	bard	6/23/2011		
		December						
E=k(s/12)	$^{a}(W/3)^{b}$							
_ 11(3:12)	()							
E= emissio	ns in lb/Veh	nicle Miles T	raveled (VI	MT)				
	t, for indust		,		1.5	PM^{10}		
K- CONSTAN	II, IOI IIIGUSII	ilai ioaus			1.5	1 1/1		
					4.0			
s= surrace	material silt	content			4.8			
a= constar	t for industr	ial roads			0.9	PM^{10}		
W= mean	vehicle weig	ıht (tons)	loaded	66000	lbs	unloaded	26000	lbs
	nt for industr			-	0.45			
D- CONSTAI	it for industi	lai 10aus			0.43	1 1V1 ₁₀		
10								
E (PM ¹⁰)		1.644441	pounds pe	r vehical mi	le travled			
			Note: this a	assumes tha	at half of the	time the tr	uck is loaded	
Assumpti	ons:							
weight of s	oil		tons/cubic					
1 Truck			cubic yards	\$				
length of h		1/4mile		aded and 1/	8 mile un-lo	aded plus a	nother 1/4 mile	e driving around
Water con	trol	85%	effective					
			Darmala af		T f		# 4m. ral ra/lan	II.
	g/sec		Pounds of PM10 per	/oor	Tons of PM10 per y	/oar	# trucks/hr	lb
	0.310799		21,608		10.8		20.0	2
	0.510733		21,000		10.0		20.0	<u> </u>
	0.233099		16,206		8.1		15.0	
	0.20000		10,200		• • • • • • • • • • • • • • • • • • • •		10.0	
	0.1554		10,804		5.4		10.0	
			,					
					conversion			
						lb/ton		
				ļ		day/yr		
					8760			
					453.6			
					3600	sec/hr		
	l			<u> </u>				<u> </u>
			Unpaved F	Roads		PM		
			Onpaved I			1 171		
ı		1		1		i	ı	

Source		AP-42 13.2		by Rich Hil	bard	6/23/2011		
		December	2003					
E-1-(-/10)	a/337/2\b							
E=k(s/12)) (W/3)							
F	i II- \ / - I-	iala Milaa T		AT.				
	ons in lb/Veh		raveled (VI	VII)				
k= constar	nt, for indust	rial roads			4	.9 PM		
s= surface	material silt	content			4	.8		
					_			
a= constar	nt for industr	iai roads			U	.7 PM		
W= mean	vehicle weig	ht (tons)	loaded	66000	lbs	unloaded	26000	lbs
	nt for industr				0.4	5 PM		
D- 00113tai	I	lai roads			0	1111		
	ļ							
	_							
	ļ							
E (PM)		6.452248	pounds per	r vehical mil	e travled			
			Note: this a	assumes tha	at half of t	he time the tr	uck is loaded	
	1							
Assumpti	ions:							
weight of s		2.01	tons/cubic	vard				
1 Truck	I		cubic yards					
length of h	aul road	1/4mile			8 mile un	loaded plus a	nother 1/4 mile	e driving around
Water con			effective	I	l iiiie uii			
Water Con	I	0370	enective					
	alsos		Dounds of		Tone of		# trucks/br	lh/h
	g/sec		Pounds of		Tons of		# trucks/hr	lb/h
			PM per yea	ar	PM per y			
	g/sec 1.219475			ar			# trucks/hr	
	1.219475		PM per yea 84,783	ar	PM per y 42	.4	20.0	9.7
			PM per yea	ar	PM per y	.4		9.7
	1.219475 0.914606		PM per yea 84,783 63,587	ar	PM per y 42 31	.8	20.0	9.7
	1.219475		PM per yea 84,783	ar	PM per y 42	.8	20.0	9.7
	1.219475 0.914606		PM per yea 84,783 63,587	ar	PM per y 42 31	.8	20.0	9.7
	1.219475 0.914606		PM per yea 84,783 63,587	ar	9M per y 42 31 21	8	20.0	9.7
	1.219475 0.914606		PM per yea 84,783 63,587	ar	PM per y 42 31 21 conversi	.8 .8 .2 .2 	20.0	9.
	1.219475 0.914606		PM per yea 84,783 63,587	ar	21 conversi	.8 .8 .2 .2 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	20.0	9.
	1.219475 0.914606		PM per yea 84,783 63,587	ar	21 conversi	.8	20.0	9.
	1.219475 0.914606		PM per yea 84,783 63,587	ar	21 conversi 20(36)	.8	20.0	9.
	1.219475 0.914606		PM per yea 84,783 63,587	ar	21 conversi 20 31 21 21 20 30 453	.8	20.0	9.7
	1.219475 0.914606		PM per yea 84,783 63,587	ar	21 conversi 20 31 21 21 20 30 453	.8	20.0	9.7
	1.219475 0.914606		PM per yea 84,783 63,587	ar	21 conversi 20 31 21 21 20 30 453	.8	20.0	9.7
	1.219475 0.914606		PM per yea 84,783 63,587 42,391	ar	21 conversi 20 31 21 21 20 30 453	.8 .8 .2 .2 .00 lb/ton .65 day/yr .60 hr/yr .6 g/lb .00 sec/hr	20.0 15.0 10.0	9.7
	1.219475 0.914606		PM per yea 84,783 63,587	ar	21 conversi 20 31 21 21 20 30 453	.8	20.0 15.0 10.0	9.
	1.219475 0.914606	AD 40 40 5	PM per yea 84,783 63,587 42,391 Unpaved R	Roads	21 conversi 20(36) 453 36)	.8	20.0 15.0 10.0	9.7
Source	1.219475 0.914606	AP-42 13.2	PM per yea 84,783 63,587 42,391 Unpaved R	ar	21 conversi 20(36) 453 36)	.8 .8 .2 .2 .00 lb/ton .65 day/yr .60 hr/yr .6 g/lb .00 sec/hr	20.0 15.0 10.0	9.7
Source	1.219475 0.914606	AP-42 13.2 December	PM per yea 84,783 63,587 42,391 Unpaved R	Roads	21 conversi 20(36) 453 36)	.8	20.0 15.0 10.0	7.3
Source	1.219475 0.914606		PM per yea 84,783 63,587 42,391 Unpaved R	Roads	21 conversi 20(36) 453 36)	.8	20.0 15.0 10.0	9.7
Source	1.219475 0.914606		PM per yea 84,783 63,587 42,391 Unpaved R	Roads	21 conversi 20(36) 453 36)	.8	20.0 15.0 10.0	9.7

E=k(s/12)	$^{a}(W/3)^{b}$							
E= emissio	ns in lb/Veh	icle Miles T	raveled (VI	ЛT)				
k= constan	t, for indust	rial roads			0.15	$PM_{2.5}$		
s= surface	material silt	content			4.8			
a= constan	nt for industr	ial roads			0.9	$PM_{2.5}$		
						2.5		
W= mean	vehicle weig	ht (tons)	loaded	66000	lbs	unloaded	26000	lbs
	nt for industr				0.45			
					51.10	2.3		
E (PM ¹⁰)		0.164444	pounds per	vehical mil	e travled			
						time the tr	uck is loaded	
Assumption	ons:							
weight of s	oil	2.01	tons/cubic	yard				
1 Truck		10	cubic yards					
length of h		1/4mile		aded and 1/	8 mile un-lo	aded plus a	nother 1/4 mile	e driving around
Water conf	trol	85%	effective					
	g/sec		Pounds of		Tons of		# trucks/hr	lb/hr
			PM2.5 per	year	PM2.5 per	year		
	0.03108		2,161		1.1		20.0	0.2
	0.02331		1,621		0.8		15.0	0.2
	0.02331		1,021		0.0		15.0	0.2
	0.01554		1,080		0.5		10.0	0.1
					conversion	s lb/ton		
						day/yr		
					8760			
					453.6			
						sec/hr		

APPENDIX B. AERSCREEN ANALYSIS

(using BEE-Line software)

AERSCREEN 11126 / AERMOD	1110 11:47:58	06/21/11
TITLE: AREA CONCRETE BAT	CH PLANT	
******************************	*** AREA PARAM	 METERS
SOURCE EMISSION RATE:	1.0000 g/s	7.937 lb/hr
AREA EMISSION RATE: () AREA HEIGHT: 10.0 AREA SOURCE LONG SIDE: AREA SOURCE SHORT SIDE: INITIAL VERTICAL DIMENSIO RURAL OR URBAN: FLAGPOLE RECEPTOR HEIGH	63.60 meters 63.60 meters N: 3.00 meters RURAL T: 1.40 meters	208.66 feet 208.66 feet 9.84 feet 4.59 feet
**************************************	LDING DOWNWA	SH PARAMETERS
BUILDING DOWNWAS		R NON-POINT SOURCES

MAXIMUM IMPACT RECEP	TOR	

Zo SURFACE 1-HR CONC RADIAL DIST TEMPORAL SECTOR ROUGHNESS (ug/m3) (deg) (m) PERIOD

1* 0.091 1387. 45 75.0 ANN

* = worst case diagonal

****** MAKEMET METEOROLOGY PARAMETERS

MIN/MAX TEMPERATURE: 273.1 / 305.4 (K)

MINIMUM WIND SPEED: 0.5 m/s

ANEMOMETER HEIGHT: 10.000 meters

SURFACE CHARACTERISTICS INPUT: USER ENTERED

ALBEDO: 0.20 BOWEN RATIO: 2.00

ROUGHNESS LENGTH: 0.091 (meters)

METEOROLOGY CONDITIONS USED TO PREDICT OVERALL MAXIMUM

IMPACT

YR MO DY JDY HR

-- -- -- ---

10 01 01 1 12

H0 U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 BOWEN ALBEDO REF WS

 $1.51 \ 0.056 \ 0.100 \ 0.020 \ 22. \ 30. \ -9.6 \ 0.091 \ 2.00 \ 0.20 \ 0.50$

HT REF TA HT

- - - - - - - - - -

10.0 273.1 2.0

METEOROLOGY CONDITIONS USED TO PREDICT AMBIENT BOUNDARY IMPACT

YR MO DY JDY HR

10 01 04 1 12

H0 U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 BOWEN ALBEDO REF WS

18.99 0.073 0.300 0.020 53. 45. -1.9 0.091 2.00 0.20 0.50

HT REF TA HT

10.0 305.4 2.0

****** AERSCREEN AUTOMATED DISTANCES

OVERALL MAXIMUM CONCENTRATIONS BY DISTANCE

MAXIMUM DIST 1-HR CONC		MAXIMUM DIST 1-HR CONC	
(m)	(ug/m3)	(m)	(ug/m3)
1.00	557.4	525.00	354.4
25.00	976.4	550.00	345.6
50.01	1305.	575.00	344.9
75.00	1387.	600.00	343.6
100.00	1145.	625.00	342.0
125.00	922.1	650.00	340.0
150.01	772.9	675.00	338.9
174.99	674.1	700.00	340.3
200.00	633.2	725.00	341.6
225.00	608.5	750.00	342.6
250.00	583.7	775.00	343.3
274.99	556.5	800.00	343.8
300.00	534.2	825.00	344.2
325.00	511.3	850.00	344.3
350.00	488.6	875.00	344.3
375.01	466.3	900.00	344.2
400.00	444.9	925.00	343.9
425.00	424.8	950.00	343.4
450.00	405.5	975.00	342.8

475.00 387.3 1000.00 342.1 500.00 370.3

3-hour, 8-hour, and 24-hour scaled concentrations are equal to the 1-hour concentration as referenced in SCREENING PROCEDURES FOR ESTIMATING THE AIR QUALITY IMPACT OF STATIONARY SOURCES, REVISED (Section 4.5.4) Report number EPA-454/R-92-019 http://www.epa.gov/scram001/guidance_permit.htm under Screening Guidance

SCALED SCALED SCALED MAXIMUM **SCALED** 1-HOUR 3-HOUR 8-HOUR 24-HOUR **ANNUAL** CALCULATION CONC CONC CONC **CONC CONC** PROCEDURE (ug/m3) (ug/m3) (ug/m3) (ug/m3)FLAT TERRAIN 1413. 1413. 1413. 1413. N/A DISTANCE FROM SOURCE 67.01 meters

IMPACT AT THE AMBIENT BOUNDARY 557.4 557.4 557.4 N/A

DISTANCE FROM SOURCE 1.00 meters