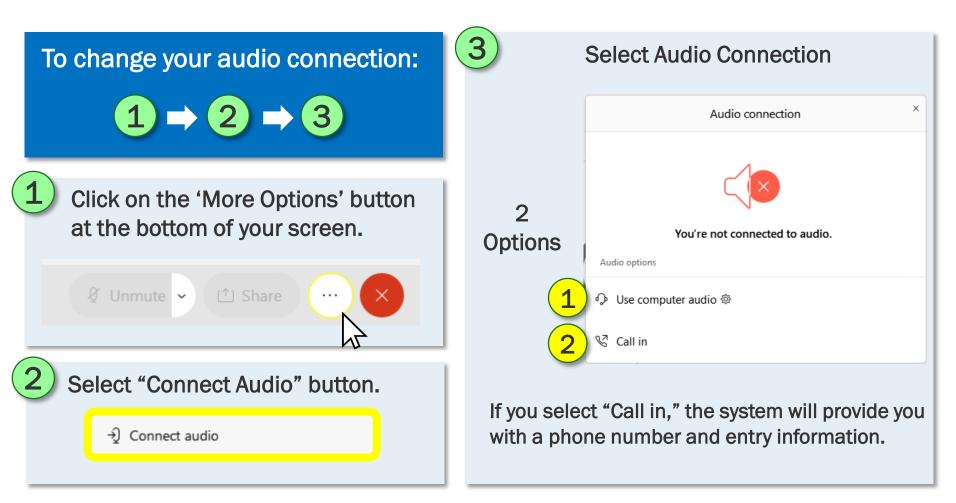


Clean Fuels Program Rule Chapter 173-424 WAC Stakeholder Meeting #5

April 13, 2022

Welcome to the Clean Fuels Program Rule Chapter 173-424 WAC Rulemaking Stakeholder Meeting

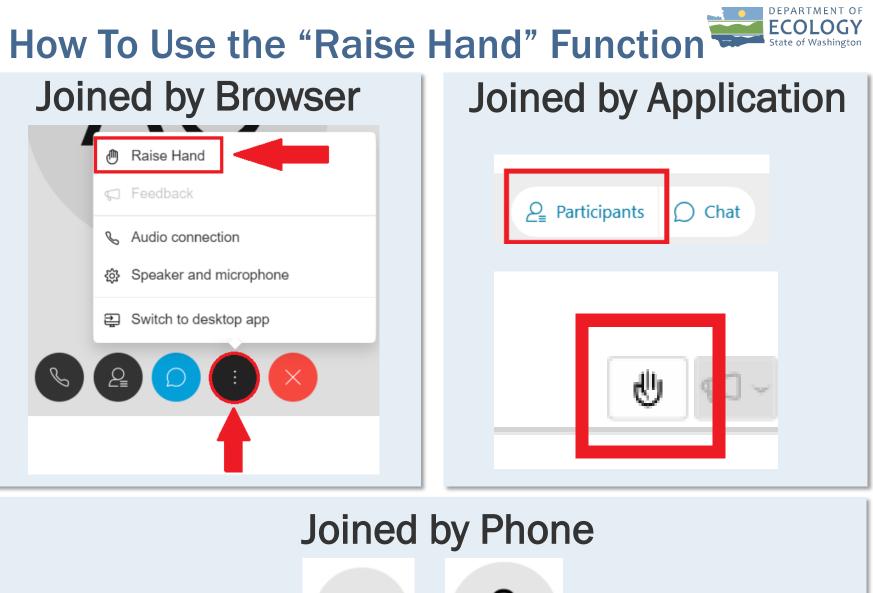
We will start at 9 a.m. PDT.


We will check sound 10 and 5 minutes before start.

Sound Check

No sound? Connect your audio and listen for a sound check before we start.

All attendees are muted.

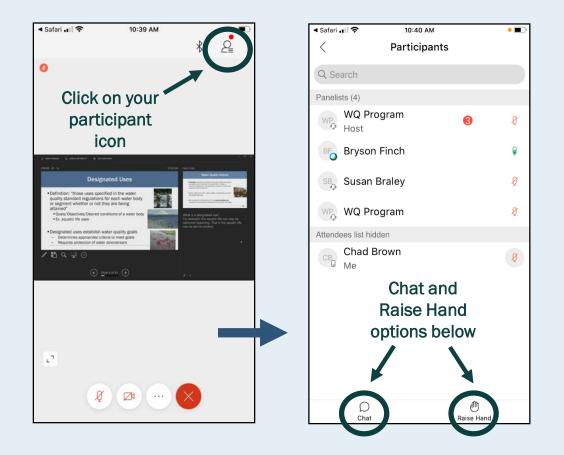


Chat with the host for technical problems

If you are using the WebEx application:	 ✓ Chat X To: Host ✓
Participants	

If you are using the WebEx browser:

 Send to: Host ~	
Type your message here	



*

3

For Those Joining via Phone or Tablet

How To Participate

During today's question-and-answer period:

- <u>Participants using computer or mobile app</u>: Use the "Raise Your Hand" button. This button is located in the lower right hand corner of the participant list window.
- <u>Participants listening in on the phone</u>: Press *3 on your phone. The system will show you have your hand raised. The host will unmute you at your turn and the system will announce that you are unmuted.

Start Recording

We will begin recording at this time.

Ecology Staff

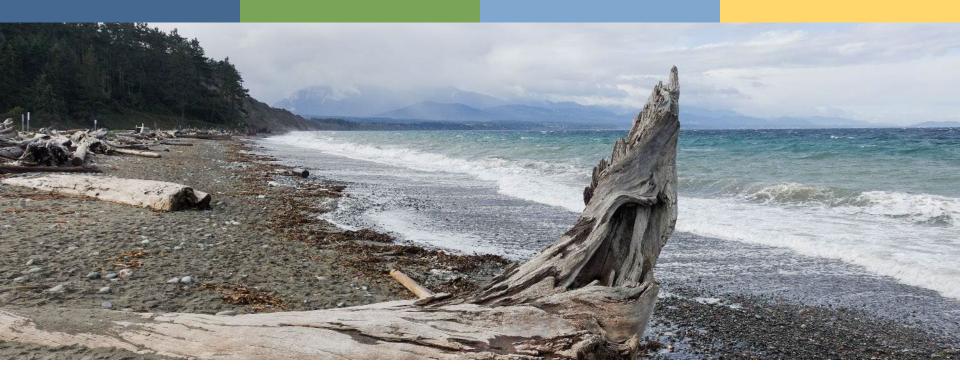
- Laura Westfall Host
- Tina Maurer Co-Host
- Jason Alberich Rules and Planning Unit Supervisor
- Rachel Assink Rulemaking Lead
- Abbey Brown Technical Lead
- Joel Creswell Climate Policy Section Manager
- Debebe Dererie Fuel Pathway Specialist
- Janée Zakoren Outreach & Engagement Specialist

Life Cycle Associates and International Council on Clean Transportation Staff

- Love Goyal Life Cycle Associates
- Nikita Pavlenko International Council on Clean Transportation
- Jane O'Malley International Council on Clean Transportation
- Yuanrong Zhou International Council on Clean Transportation

Agenda

Stakeholder comments received and Q&A

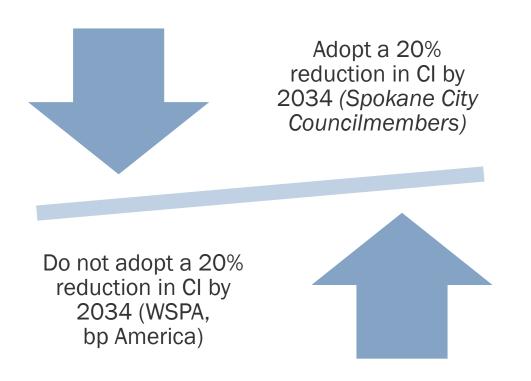

Peer review of carbon intensity model

Update on carbon intensity model

Rule timeline, program fees, and draft rule overview

Stakeholder Comments

Abbey Brown



Comments Received

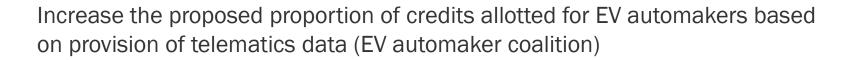
Alliance for Automotive Innovation	Avista Corp	bp America	CalPortland
Environmental and social justice organizations coalition	EV automakers coalition	PineSpire	Poet, LLC
Smart Charging Technologies	Spokane City Council Members	Washington Environmental Council/Washington Conservation Voters	Western States Petroleum Association

(Comments submitted between March 8, 2021 – April 8, 2022)

Carbon Intensity Standard

- Require a CI reduction and compliance obligation in 2023 (PineSpire)
- Set a cap on capacity-based credits (PineSpire)

Comments on Residential EV Charging


Support Option 3: OEMs are allowed to claim a % of credits based on their provision of charging data

(EV automaker coalition, Alliance for Automotive Innovation)

Utilities may claim 100% of credit revenue (Environmental & social justice groups coalition, Avista, Spokane City Councilmembers)

Support Option 1:

Comments on EV Charging

Non-residential charging: Utility should claim credits. If the utility does not claim credits, charging station owner should receive the credits. (Avista)

Multifamily charging: Clarify who the primary credit generator will be – the owner or the service provider? (PineSpire)

- Allow for inclusion of EERs for more vehicle types, such as electric tractors (PineSpire)
- Include CNG/RNG infrastructure capacity credits (CalPortland)
- Do not require additional/separate metering requirements for EV charging (Spokane City Councilmembers)

Comments on EV Charging

eForklifts

- The credit generator should be the **fleet owner**. (PineSpire)
- The credit generator should be the charging equipment owner. (Smart Charging Technologies)

eTRU

• The credit generator should be the **charger** of the vehicle. (PineSpire)

Comments on Fuel Pathways

Exempt all aircraft fuels (including conventional jet fuel, aviation gasoline, and SAF) and allow these fuels to generate credits (bp America)

Allow for refinery investment credits (WSPA)

Allow for farm-level Cl accounting for biofuels (Poet LLC)

Allow for Tier 2 pathway applications starting in 2023 (WSPA)

Comments on Other Topics

- Support for using a market price cap (PineSpire)
- Include book-and-claim accounting for RECs (PineSpire)

 Allow for advance credits for transit agencies, public or non-profit fleets, and Tribal Nations (Spokane City Councilmembers)

We are not noting all the additional clarifications regarding specific sections' wording and definitions.

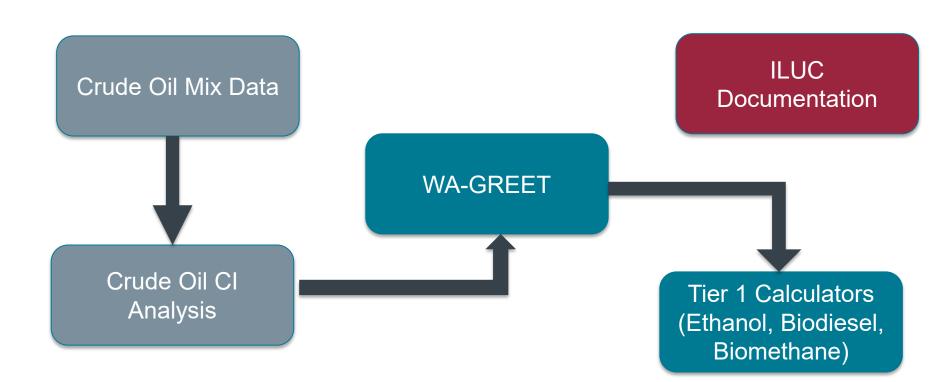
Question and Answer

Keep questions related to stakeholder comments.

Washington State Clean Fuel Program – Life Cycle Assessment Peer Review

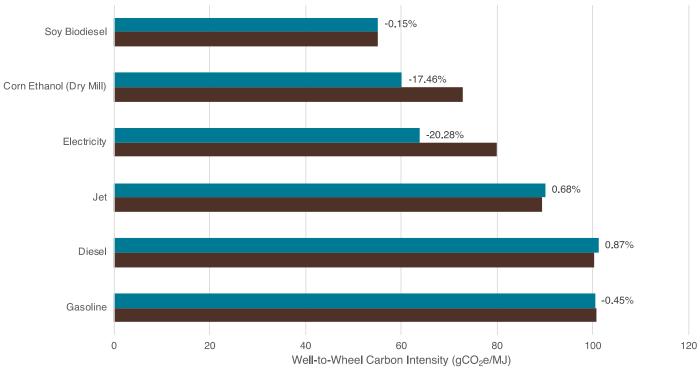
Nikita Pavlenko, Fuel Program Lead, International Council on Clean Transportation April 13, 2022 Washington

Overall Impressions



Overall Impressions

- Life Cycle Associates' approach largely consistent with LCA methodology and rigor of California LCFS
- Minor data gaps, particularly on crude oil mix & electricity. LC Associates' assumptions allow for reasonable approximations
- Results of LCA largely align with expected ranges & existing literature
- Additional analysis and recommendations necessary to address ILUC



Peer Review Approach

Overview of Key Pathways

■WA-GREET ■CA-GREET

Crude Oil Assessment

Summary of Approach

- Primarily based on state-level disclosures of oil imports (WA, UT, MT)
 - Supplemented with EIA, ECY input, and Canadian data
- Use existing life-cycle CI's from California OPGEE assessment
 - Adjusted for transport distance

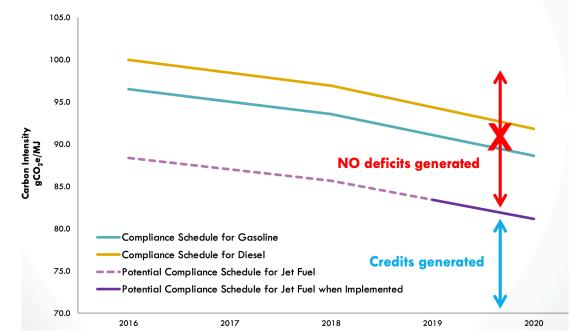
OPGEE 2.0 Model: https://eao.stanford.edu/opgee-oil-production-greenhouse-gas-emissions-estimator

Data Gaps

- Field level data absent from WA sources
- No OPGEE CI for three oil sources (~0.5% of WA crude oil mix, 2% of MT crude oil mix)
- Source of Canadian crudes for MT and UT refineries
- Transport distance adjustment for MT & UT crude oils

Refinery Modeling

- Based on Argonne National Labs' linear modeling study
- Based on energy efficiency of refinery, allocation of emissions to co-products
- WA state refinery configuration similar to CA & US-average


Refinery type breakdown (vol%)	Washington	California	U.S. average
Vacuum distillation	24%	22%	21%
Thermal cracking	7%	9%	7%
Catalytic cracking – Fresh	12%	13%	14%
Catalytic cracking – Recycled	0.2%	0.3%	0.2%
Catalytic hydro-cracking	5%	9%	6%
Catalytic reforming	12%	7%	9%
Hydrotreating/ Desulfurization	38%	39%	42%
Fuels solvent deasphalting	2%	1%	1%

EIA Downstream charge capacity: https://www.eia.gov/dnav/pet/pet_pnp_cap1_dcu_nus_a.htm

Jet Fuel Carbon Intensity

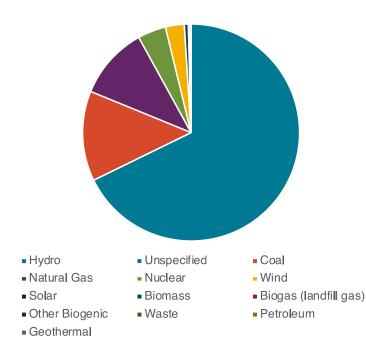
- WA-only crude mix (no imports from UT+MT)
- ~10% lower WtW emissions than diesel or gasoline
- Refinery emissions not documented, but consistent with diesel & gasoline approach
- Recommend implementation as an "opt-in" benchmark

LCFS: Evaluation of alternative jet fuel inclusion;

https://ww2.arb.ca.gov/sites/default/files/classic/fuels/lcfs/lcfs_meetings/031717pr esentation.pdf

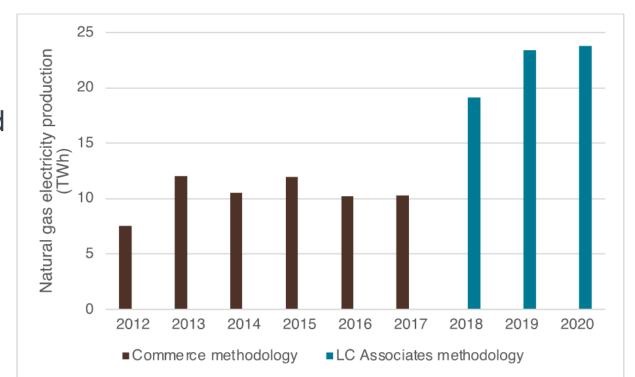
Recommendations

- 1. Incorporate jet fuel CI as a benchmark for AAF's; document refinery modeling & crude mix for this pathway, ensure consistency with diesel & gasoline
- 2. Long-term: Improve data resolution of crude oil imports to WA state
- 3. Long-term: Use OPGEE 3.0 to assess WA crude oil CI, particularly as crude oil mix changes
- 4. Long-term: Evaluate in-state refinery emissions with dedicated LCA tool



Electricity

Summary of Approach

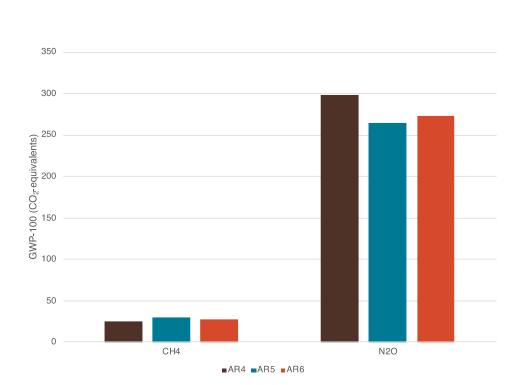

- Based on WA Commerce disclosure report of fuel mix
- "Unspecified" electricity is ~13% – attributed to natural gas, with biogas & cogeneration
- Emissions from "waste" & "other" attributed to residual oil (<1%)

Re-Allocation of Unspecified Electricity

- Likely overattribution to natural gas
- Re-weight based on previous Commerce methodology
- Minor decrease in emissions (~6 gCO₂e/kWH)

Recommendations

- 1. Re-allocate "Unspecified" emissions to a representative breakdown of electricity sources
- 2. Update model to attribute waste-derived electricity emissions to landfill biogas and waste-to-energy incineration (less than 1% of state-wide electricity)



Choice of Global Warming Potential

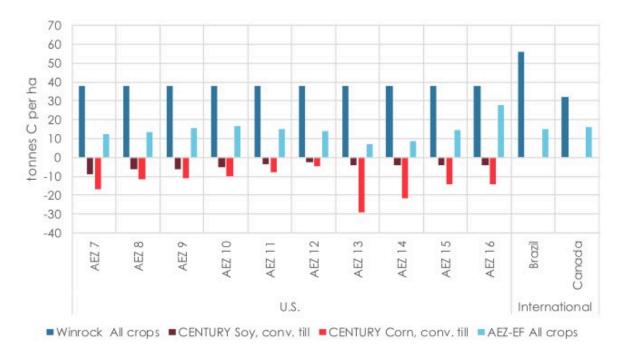
Comparison of GWP Values

- WA-GREET utilizes AR4 GWP's from 2007
- We recommend updating the model to AR5 GWP factors; align with forthcoming OPGEE 3.0 and 2024 GHG Inventory reporting
- Likely minor effects, except for pathways with high methane leakage

Indirect Land-Use Change Emissions

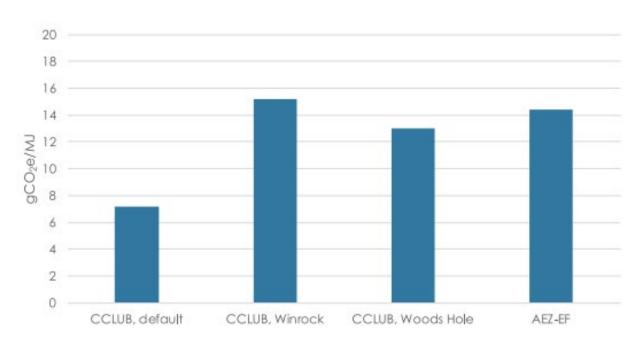
Summary of Changes

- LC Associates recommends CARB LCFS ILUC values; Oregon CFP ILUC for corn & sorghum
- Zero ILUC for cover crops
- Substantial variation in the literature remains; key differences on soil carbon, land database, and yield


			Ethai	lor	Biodiesel/ Renewable Diesel						
Study	Model	Corn	Sorghum	Sugar cane	Corn Stover	Soy	Canola	Palm	Carinata		
iLUC (g CO2e/MJ Fuel)											
EPA 2010 FASOM/FAPRI		26.3	28.0	5.1		31.9					
CARB 2009 GTAP BIO		30	45	46		42		N/A			
CARB 2014	GTAP BIO ADV	19.8	19.4	11.8		29.1	14.5	71.4			
OR LCFS	GTAP BIO ADV	7.6	19.4	11.8	0	29.1	14.5				
ANL 2018	CCLUB GTAP 2011	7.4				7.9					
ANL 2018	CCLUB GTAP 2013	3.9									
		ITA	ATJ	ITA	ATJ	SPK	SPK	SPK	SPK		
CORSIA	GTAP BIO ADV	21.7		7.4		20.0	20.7	34.6	-21.4		
CORSIA GLOBIOM		22.5		7.2		50.4	27.5	60.2	N/A		
Recommende	ed WA CFS	7.6	7.6	11.8	0	29.1	14.5	71.4	0		

Choice of Land Conversion Emission Factor Model

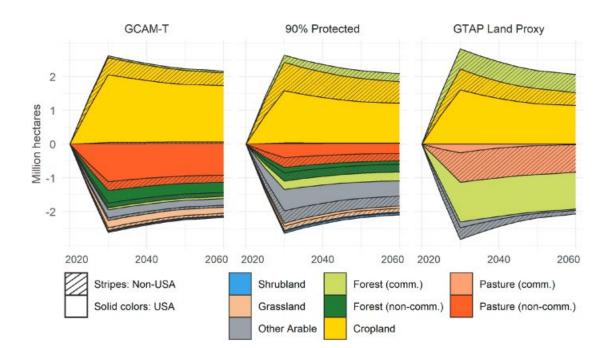
- CCLUB estimates soil carbon increase for croplandpasture to cropland
- Other models & field data suggest opposite effect
- Croplandpasture effects drive a portion of ILUC trends



Malins et al., (2020). How robust are reductions in modeled estimates from GTAP-BIO of the indirect land use change induced by conventional biofuels? https://doi.org/10.1016/j.jclepro.2020.120716

Choice of Land Conversion Emission Factor Model

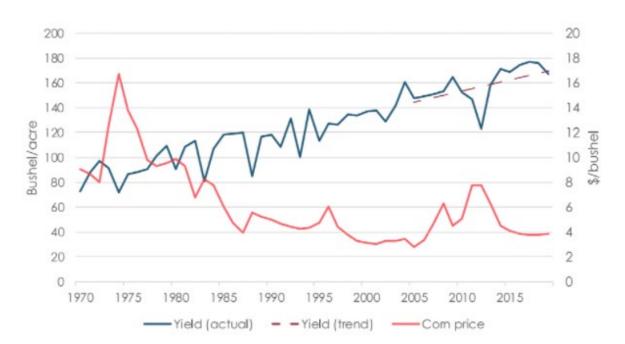
- CCLUB estimates soil carbon increase for croplandpasture to cropland
- Other models & field data suggest opposite effect
- Croplandpasture effects drive a portion of ILUC trends



Plevin, 2015. Comments on modeling biofuel-induced land-use change emissions. https://drive.google.com/file/d/1cMDft6iVnWukFlz0n_T760yoSznKCj6C/view

Unmanaged Forestland

- GTAP does not assess impacts on forestland without economic value (i.e., unmanaged forestland)
- ILUC emissions sensitive to share of protected forestland
- Counterintuitive results domestic deforestation results in foreign afforestation


Plevin et al. (2022). Choices in land representation materially affect modeled biofuel carbon intensity estimates.

https://www.sciencedirect.com/science/article/pii/S0959652622010988?via%3Dihub

Yield Increase & Double-Cropping

- Multiple upward revisions of yield elasticity (YDEL) in GTAP revisions
- Actual yield increase linked to multiple noneconomic factors
- Recent GTAP model changes greatly increase cropping intensity (i.e., doublecropping) absent evidence

Cover Crops

- Zero-ILUC recommendation for cover crops is too sweeping
- Previous CARB & EPA analyses more limited in scope
- Multiple definitions intermediate crops, secondary crops, cover crops, with different definitions and integration with existing food market
- Define "cover crop" and implement system for verifying no displacement of cropland

ILUC Recommendations

- 1. In near-term, use full set of CARB ILUC factors for cropderived fuels
- 2. ICCT does not include a zero ILUC emission factor for cover crops. First, define "cover crop" within policy and pair with verification scheme to ensure no displacement of cropland
- In long-term, valuate ILUC impacts of WA CFP with feedback from stakeholders, academic experts, regulators from CARB & EPA; consider alternative economic & land conversion models such as GCAM

Summary of Recommendations (Near-Term)

- 1. Include fossil jet fuel CI as a benchmark for alternative aviation fuels on an opt-in basis
- 2. Re-allocate unspecified electricity to representative breakdown of electricity sources; add emission factors for landfill gas & waste-to-energy electricity
- 3. Update WA-GREET to include AR5 GWP's

Summary of Recommendations (Long-Term)

- 1. Improve granularity of crude oil import data
- 2. Assess CI of imported crude oil and refinery practices specific to WA
- 3. Develop annual updates to electricity mix and improve resolution of electricity sources
- Evaluate ILUC impacts of WA CFP with feedback from stakeholders, academic experts, regulators from CARB & EPA; consider alternative economic & land conversion models

Update on Carbon Intensity Model Love Goyal Stefan Unnasch

Washington CFS Public Meeting Presentation Life Cycle Modelling Tools Love Goyal Stefan Unnasch

April 13, 2022

Outline

- Stakeholder Comments on LCA modelling
 - Petroleum fuel Modelling
 - Bioethanol pathways
 - o iLUC
 - General comments
- Responses to Comments
- Draft Washington Utility CI Calculation Tool

Comments Received

Copyright 2022 © Life Cycle Associates, LLC All Rights Reserved

Comments on Petroleum Modelling

OPGEE	 Use OPGEE 3 instead of OPGEE 2.0c
model	(multiple)
Canadian Crude	 Calculate averaging based on production level and delivery volume by specific field (WSPA) Canadian Crude transport to Washington vs California (WSPA)
Crude	 Update process fuel use in refineries
Refining in	(WSPA) Request to clarify refining efficiency in
GREET	GREET (Phillips 66)

Comments on Bioethanol

- Allow Site-specific agricultural inputs (POET)
- User-defined chemical use (POET)
- Distinguish electricity use for DDGS drying (POET)
- Provide credit for capture fermentation CO₂ (POET)

Comments on iLUC

Corn Ethanol iLUC Value

- "Most LUC estimates are now converging on substantially lower estimates" (POET)
- Insufficient evidence for reduced value (Washington Environmental Council)

General Comments

- Searchinger et.al. (2008) reference out of date (WSPA)
- Soy Oil iLUC too high, re-evaluate (WSPA)
- Require annual auditing to verify mischaracterization of palm oil (WSPA)

New fuel feedstock

• How will it be determined? (Oral comment)

General Comments

- Use newer GREET model (POET and Neste)
- Use of Global Warming Potential (GWP) 100year vs 20-year timeframe (WEC)
- Ensure accurate, updated natural gas leakage rates (WEC)

Comment Responses: General

General Responses to Comments

Life Cycle Associates LLC Trinity Consultants

Public Comments

- Comments have been addressed in the updated supplemental documentation as appropriate
- Crude and Petroleum
 - Expanded the supplementary documentation to address comments and further clarify methodology
 - Minor changes required, to be implemented in next version
 - Summary responses to each comment included here

Bioethanol

- Ongoing consultation with Department of Ecology
- Modelling solutions can be developed following decisions on requested provisions
 - Not implemented in current version

Public Comments

• iLUC

- Comments addressed in the updated iLUC assessment memo
- Results have not been affected till date

• General comments

- Adoption of CA-GREET3.0 is deemed appropriate by Ecology as baseline modelling tool
 - Dictates the overall framework for CI calculation
 - Selectively choosing input parameters from newer GREET model directly challenges consistency across all biofuel pathways
 - Natural gas leakage rates in CA-GREET3 were comparable with GREET1_2021, no changes made to WA-GREET
- Require additional consultation with Ecology

Peer Review Comments

- Detailed peer review report received on April 4, 2022
- Comments currently under review, to be addressed in next versions of models as well as documentation as appropriate
 - Responses to comments specifically related to crude CI included here

Detailed Responses on Crude and Petroleum CI Comments

Life Cycle Associates LLC Trinity Consultants

Public Comments

• Use of OPGEE 3.0 instead of OPGEE2.0:

- WA Ecology and LCA/Trinity do not have access to OPGEE3.0 which is currently under development by Stanford University. We have reviewed draft technical documentation for OPGEE3.0 and the magnitude of emissions changes for specific oil fields are unclear.
- We recommend the use of the latest model version for future crude CI updates.

• Include all crude oil types processed in WA, MT, UT:

- The only crude fields omitted from the WA crude CI analysis were Brunei and Papua New Guinea, which represented only 0.5% of crude imports in 2017. Their CI was not available in OPGEE2.0.
- There were no OPGEE2.0 inputs or outputs for Montana crude.
 - Minor impact on average crude CI calculations for MT refineries (2% of total crude).
 - > OPGEE CI modeling for MT oil fields is recommended for future updates.
- Similar to CA LCFS, we recommend the use of a default CI value (=average crude CI) for crude oil fields not available in the Washington CFS CI Lookup Table for Crude Oil.

Public Comments

- Differences in transport mode between CA and WA for the crude transport adjustment calculation:
 - The crude transport adjustment accounted for both distance and mode.
 - For example, for Canada crude transport vessel distance to CA was replaced with vessel, pipeline and rail distances to WA.
 - Note higher emissions factors for rail and pipeline offset shorter travel distances for vessels.
 - Technical document (Appendix A) was updated to include OPGEE emission factors and additional clarification.

Use of production volumes for Canadian oil fields to come up with an average crude CI value for Canada:

- Even if production data is used, significant uncertainty will remain related to actual import volumes to WA by oil field. Therefore, we chose a more straightforward, conservative and easier to replicate approach, consistent with Oregon DEQ.
- We recommend that future average crude oil CI updates include actual crude import data by oil field/MCON to improve its accuracy.

Peer Review Comments

- Consider the use of oil property data for multi-field countries importing into WA:
 - Impacts how individual oil field CI values are averaged by country of origin (8% of crude imports)
 - We have considered this approach but find our methodology more straightforward and easier to replicate.
 - ICCT sensitivity testing for Brazil resulted in only a minor CI difference (5.76 vs 5.86)
 - Researchers acknowledged that uncertainties remain with their proposed approach to allocate total import volumes by oil field using API and sulfur data and match with corresponding CI values in OPGEE.
 - This issue can be resolved with annual reporting of crude oil imports by field/MCON.
- WA crude transport adjustment was not well documented:
 - We have updated Technical Support Document (Appendix A) with OPGEE transport emission factors by mode that were used to develop a CI adjustment for WA crude oil average due to crude transport differences.

Peer Review Comments

- Canada crude inputs to Montana and Utah refineries could be refined further:
 - Crude CI for Montana refineries is driven by Canada imports from Alberta based on state economic reports.
 - The oil sands vs conventional split is applied based on Alberta oil field production data for 2017.
 - The assumption that 84% of Canada crude imported to MT were oil sands is supported by Canada Energy Board data for PADD 4 imports in 2017.
 - Given Montana finished fuel imports are only 6% of total fuel used in WA state, any changes to the methodology was have a minor impact on the overall petroleum CI values.
 - Ecology may choose to conduct OPGEE modeling for MT crude for future WA crude oil average CI updates.

• Sources for Montana and Utah crude CI Values were unclear:

 Technical support document (Appendix A) was updated with sources for Wyoming and Utah crude CI, which were used for MT and UT average crude CI calculations.

WA Utility Cl Calculator

Life Cycle Associates LLC

WA Utility CI Calculator

- Draft version 0.2a based on 2020 WA Utility mix disclosure report
- Follows WA-GREET electricity CI calculation but implemented externally to WA-GREET

Life Cycle Associates, LLC

Washington Utility CI Calculator for the Washington Clean Fuel Standard

Current Version:0.2aModel Year2020Date Modified4-Apr-22

Authors

 Love Goyal
 goyal@lifecycleassociates.com

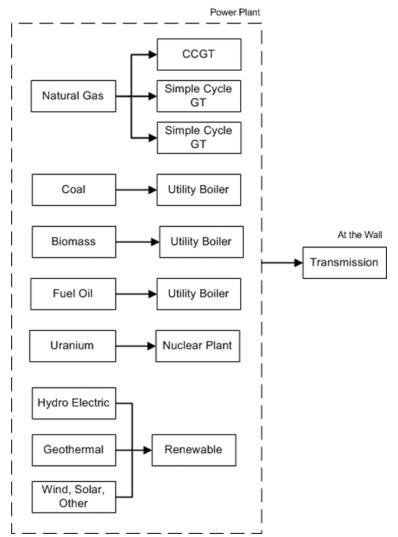
 Stefan Unnasch
 Unnasch@lifecycleassociates.com

Description

This Excel workbook contains a life cycle GHG model for Power Production from Utilitites within Washington. This tool is developed for the Washington Clean Fuel Standard

Sheet	Contents											
Utility_Cl	Itility Selection and lifecycle CI Results											
Report_Extract	Raw data extracted from Washinton Utility Mix Disclosure Report											
Year_Disclosure	Aggregation of the raw Utility mix disclosure data by Utility											
Year_Fuel_Share	Calculation of the electriciy mix for each utility based on disclosure data and fuel type allocation											
EF_Tables	CI Data extracted from WA-GREET and resource allocation table											

Legend
Worksheets


Text Color

Drop-down Menu Input parameters are in blue text and may be changed by the user Calculations are black text and should not be changed

Copyright 2022 © Life Cycle Associates, LLC All Rights Reserved

WA Utility CI Calculator

- Developed draft WA Utility CI Calculator v0.2a – external to WA-GREET
- Utilizes annual Washington utility mix disclosure report for fuel mix
- Well-to-plug GHG emissions calculated following WA-GREET methodology and emission factors
- Described in detail in the updated supplemental documentation

Electricity CI Calculation in GREET

- CI calculation based on lifecycle includes:
 - Resource upstream
 - Electricity generation at plant
 - Transmission losses
- Upstream EF specific to each fuel type as modelled in WA-GREET by region
- Generation emissions combines specific fuel use for each fuel type with corresponding power generation technology share and efficiency
 - Specific to a given NERC region as built into WA-GREET
 - > Washington is part of WECC region

Electricity CI Calculation in GREET

- Combustion Technology Shares and Power Plant Energy Conversion Efficiencies for GREET Calculation
 - WECC region shown below

Electricity Production: WAMX Region	Combustion Technology Shares for A Given Plant Fuel Type: EVs, GC PHEVs, and Electrolysis	Power Plant Energy Conversion Efficiency (Transportation)				
Residual Oil-Fired Power Plants		33.65%				
Boiler	72.4%	33.90%				
Internal Combustion Engine	15.5%	39.00%				
Gas Turbine	12.1%	27.60%				
Natural Gas-Fired Power Plants		48.12%				
Boiler	6.4%	32.00%				
Simple-cycle gas turbine	3.3%	32.80%				
Combined-cycle gas turbine	89.2%	51.10%				
Internal Combustion Engine	1.1%	34.40%				
Coal-Fired Power Plants		34.70%				
Boiler	100.0%	34.70%				
IGCC	0.0%	40.00%				
Biomass Power Plants		22.60%				
Boiler	100.0%	22.60%				
IGCC	0.0%	40.00%				
Nuclear Power Plants		100.0%				
Other Power Plants (hydro, wind, geothermal, etc.)		100.0%				
Hydroelectric	92.4%					
Geothermal	0.0%					
Wind	7.2%					
Solar PV	0.4%					
Others (Biogenic Waste, Pumped Storage, etc.)	0.0%					

Copyright 2022 © Life Cycle Associates, LLC All Rights Reserved

WA Utility Mix Disclosure

- Yearly utility mix disclosure report available through WA Department of Commerce
 - WA Utilities identified by unique "Claimant ID"
 - Raw data available in the calculator on "Report Extract" sheet

				BPA						Total	Total Claims		
	Customer			Unspecified	BPA Claims			Unspecified		Unspecified	on Plants		Percent
Report		Claimant		Purchases	_	Total BPA	Adjusted WA	_	Plant Claims		(Specified)	_	Fuel Type
		ID 🖃 Claimant Name	Name 🛛	MWh 🛛	MWh 👻	MWh 🛛	PacifiCorp 🛛	MWh ×	MWh 🛛	MWh 🛛	MWh 🛛	Total MWI 🝸	Share 🛛 🝸
2020		1 Alder Mutual Light	Biogas	0		0	0	0 0	0	0	0	0	0.00%
2020		1 Alder Mutual Light	Biomass	2	-	2	C	0 0	0	2	0	2	0.04%
2020		1 Alder Mutual Light	Coal	76	-		0	0 0	0	76	0	76	
2020	WA	1 Alder Mutual Light	Geothermal	0	0	0	0	0 0	0	0	0	0	0.00%
2020	WA	1 Alder Mutual Light	Hydro	97	4,616	4,713	0	0 0	0	97	4,616	4,714	86.48%
2020	WA	1 Alder Mutual Light	Natural Gas	55	0	55	C	0 0	0	55	0	55	1.00%
2020	WA	1 Alder Mutual Light	Nuclear	6	595	601	C	0	0	6	595	602	11.04%
2020	WA	1 Alder Mutual Light	Other Biogenic	0	0	0	0	0 0	0	0	0	0	0.00%
2020	WA	1 Alder Mutual Light	Other Non-Biogenic	2	0	2	0	0 0	0	2	0	2	0.03%
2020	WA	1 Alder Mutual Light	Petroleum	1	. 0	1	C	0 0	0	1	0	1	0.02%
2020	WA	1 Alder Mutual Light	Solar	0	0	0	C	0 0	0	0	0	0	0.00%
2020	WA	1 Alder Mutual Light	Unknown	0	0	0	0	0 0	0	0	0	0	0.00%
2020	WA	1 Alder Mutual Light	Waste	0	0	0	0	0 0	0	0	0	0	0.00%
2020	WA	1 Alder Mutual Light	Wind	0	0	0	C	0 0	0	0	0	0	0.00%
2020	WA	4 Benton County PUD #1	Biogas	0	0	0	C	0 0	0	0	0	0	0.00%
2020	WA	4 Benton County PUD #1	Biomass	699	0	699	C	0 0	0	699	0	699	0.04%
2020	WA	4 Benton County PUD #1	Coal	22,887	0	22,887	0	0 0	0	22,887	0	22,887	1.27%
2020	WA	4 Benton County PUD #1	Geothermal	0	0	0	0	0 0	0	0	0	0	0.00%
2020	WA	4 Benton County PUD #1	Hydro	29,257	1,389,416	1,418,673	0	0 0	13,769	29,257	1,403,185	1,432,442	79.50%
2020	WA	4 Benton County PUD #1	Natural Gas	16,473	0	16,473	0	0 0	0	16,473	0	16,473	0.91%
2020	WA	4 Benton County PUD #1	Nuclear	1,874	179,185	181,059	C	0 0	0	1,874	179,185	181,058	10.05%
2020	WA	4 Benton County PUD #1	Other Biogenic	0	0	0	0	0 0	0	0	0	0	0.00%
2020	WA	4 Benton County PUD #1	Other Non-Biogenic	461	0	461	0	0 0	0	461	0	461	0.03%
2020	WA	4 Benton County PUD #1	Petroleum	396	0	396	C	0 0	0	396	0	396	0.02%
2020	WA	4 Benton County PUD #1	Solar	0	0	0	C	0 0	0	0	0	0	0.00%
2020	WA	4 Benton County PUD #1	Unknown	0	0	0	C	0 0	0	0	0	0	0.00%
2020	WA	4 Benton County PUD #1	Waste	14	0	14	C	0 0	0	14	0	14	0.00%
2020	WA	4 Benton County PUD #1	Wind	0	0	0	C	0 0	147,426	0	147,426	147,426	8.18%

WA Utility CI Calculator

• Raw utility mix disclosure data aggregated by utility

laimant	:								Other	Other Non-						Unspecified	Unspecified	1
D	Claimant Name	• Biogas •	Biomas: *	Coal	Geothern -	Hydro 💌	Natural G 👻	Nuclear 👻	Biogenie	Biogenie	Petroleu 👻	Solar 💌	Unknow 🕆	Waste 💌	Wind 💌	(Plant) 🔻	(BPA) 🔻	Total 🔻
	1 Alder Mutual Light	0	0	0	0	4,616	0	595	0	0	0	0	0	0	0	0	239	5,450
	4 Benton County PUD #1	0	0	0	0	1,403,185	0	179,185	0	0	0	0	0	0	147,426	0	72,061	1,801,857
1	5 Benton Rural Electric Assn	0	0	0	0	452,998	0	58,420	0	0	0	0	0	0	0	0	23,495	534,913
	5 Big Bend Electric Coop	0	0	0	0	479,324	0	61,815	0	Ö	0	Ō	0	Ō	0	37,344	24,859	603,342
1	2 City of Blaine	0	0	0	0	68,150	0	8,789	0	0	0	0	0	0	0	0	3,535	80,474
1	8 Centralia City Light	0	0	37,303	0	199,125	0	20,523	0	0	42	0	0	0	0	0	8,254	265,247
1	9 Chelan County PUD #1	0	0	0	0	1,663,395	0	0	0	0	24	0	0	0	327	0	0	1,663,746
2	0 Cheney Light Department	0	0	0	0	112,151	0	14,463	0	0	0	0	0	0	0	8,761	5,816	141,191
2	1 Chewelah Electric Department	0	0	0	0	17,640	0	2,275	0	0	0	0	0	0	0	0	915	20,830
2	2 Clallam County PUD #1	0	0	0	0	574,455	0	72,850	0	0	0	0	0	0	0	0	29,298	676,603
2	3 Clark County PUD #1	0	0	0	0	2,355,224	1,381,142	301,574	0	0	0	0	0	0	140,908	323,575	121,280	4,623,703
2	6 Clearwater Power (WA)	0	0	0	0	18,639	0	2,404	0	0	0	0	0	0	0	5	965	22,013
3	0 Columbia Rural Electric Assn (WA	0	0	0	0	290,733	0	37,494	0	0	0	0	0	0	0	33,063	15,079	376,369
3	2 Coulee Dam, Town of	0	0	0	0	14,392	0	1,856	0	0	0	0	0	0	0	0	746	16,994
3	3 Cowlitz County PUD #1	0	67,647	2,622	0	3,156,681	16,590	387,284	1,151	0	127	558	0	0	348,336	266,243	155,752	4,402,991
3	5 Douglas County PUD #1	0	0	656	0	741,599	5,337	0	0	0	1	292	0	0	0	261,401	0	1,009,286
3	8 Eatonville Electric Department	0	0	0	0	23,494	0	3,030	0	0	0	0	0	0	0	0	1,220	27,744
3	9 Elmhurst Mutual Power & Light	0	0	0	0	238,201	0	30,719	0	0	0	0	0	0	0	0	12,354	281,274
4	1 Ellensburg Electric Division	0	0	0	0	170,796	0	22,027	0	0	0	0	0	0	0	0	8,858	201,681
4	4 Ferry County PUD #1	0	0	0	0	59,888	0	7,723	0	0	0	0	0	0	0	0	3,106	70,717
4	5 Franklin County PUD #1	0	0	0	0	893,085	0	113,472	0	Ö	0	0	0	Ō	0	28,227	45,633	1,080,417
4	7 Grays Harbor County PUD #1	0	8,040	0	0	755,205	0	97,394	0	0	0	0	0	0	0	0	39,168	899,807
4	8 Inland Power & Light	0	0	0	0	843,076	0	108,726	0	0	0	0	0	0	0	50,547	43,726	1,046,075
5	1 Kittitas County PUD #1	0	0	0	0	94,855	0	12,233	0	0	0	0	0	0	0	185	4,919	112,192
5	2 Klickitat County PUD #1	0	0	0	0	376,883	0	42,921	0	0	0	0	0	0	0	63,697	17,260	500,761
5	3 Kootenai Electric Coop	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	4 Lakeview Light & Power	0	0	0	0	218,245	0	28,146	0	0	0	0	0	0	0	0	11,319	257,710
5	5 Lewis County PUD #1	0	0	0	0	748,174	0	95,975	0	0	0	0	0	0	59,989	0	38,598	942,736
5	9 McCleary Light & Power	0	0	0	0	26,063	0	3,361	0	0	0	0	0	0	0	0	1,351	30,775
6	3 Milton Electric Division	0	0	0	0	48,057	0	6,198	0	0	0	0	0	0	0	0	2,493	56,748
6	4 Modern Electric Water Company	0	0	0	0	197,048	0	25,412	0	0	0	0	0	0	0	0	10,219	232,679

WA Utility CI Calculator

- Electricity generation sources under utility mix disclosure transformed into GREET resource categories
- Ongoing consultation with Department of Commerce for appropriate allocation

Allocation of Washing	gton Fuel Mix Dis	closure Resou	rces Categ	ories to WA-GRE	ET Resour	ces Categories	5		
	Residual oil	Natural gas	Coal	Nuclear power	Biomass	Hydroelectric	Geothermal	Wind	Solar PV
Biogas		1							
Biomass					1				
Coal			1						
Geothermal							1		
Hydro						1			
Natural Gas		1							
Nuclear				1					
Other Biogenic		1							
Other Non-Biogenic	1								
Petroleum	1								
Solar									1
Unknown		1							
Waste	1								
Wind								1	
Unspecified (Plant)		1							
Unspecified (BPA)		1							

WA Utility CI Calculator

- Post-allocation resource mix used to calculate fuel share % for each utility
 - Available on "2020 Fuel Share" sheet

Claimant		Residual	Natural		Nuclear power	Biomass	Hydroelectric	Geothermal			
ID 👻	Claimant Name 🖵	oil % 👻	gas % 👻	Coal % 💌	% 🔻	% 🔻	% 💌	% 💌	Wind % 💌	Solar PV 👻	Total 💌
1	Alder Mutual Light	0.00%	4.39%	0.00%	10.92%	0.00%	84.70%	0.00%	0.00%	0.00%	100.00%
85	Asotin County PUD #1	0.00%	4.37%	0.00%	10.93%	0.00%	84.71%	0.00%	0.00%	0.00%	100.00%
109	Avista (WA)	0.75%	45.52%	13.01%	0.00%	5.21%	33.87%	0.00%	1.65%	0.00%	100.00%
4	Benton County PUD #1	0.00%	4.00%	0.00%	9.94%	0.00%	77.87%	0.00%	8.18%	0.00%	100.00%
5	Benton Rural Electric Assn	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%
6	Big Bend Electric Coop	0.00%	10.31%	0.00%	10.25%	0.00%	79.44%	0.00%	0.00%	0.00%	100.00%
18	Centralia City Light	0.02%	3.11%	14.06%	7.74%	0.00%	75.07%	0.00%	0.00%	0.00%	100.00%
19	Chelan County PUD #1	0.00%	0.00%	0.00%	0.00%	0.00%	99.98%	0.00%	0.02%	0.00%	100.00%
20	Cheney Light Department	0.00%	10.32%	0.00%	10.24%	0.00%	79.43%	0.00%	0.00%	0.00%	100.00%
21	Chewelah Electric Department	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%
12	City of Blaine	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%
22	Clallam County PUD #1	0.00%	4.33%	0.00%	10.77%	0.00%	84.90%	0.00%	0.00%	0.00%	100.00%
23	Clark County PUD #1	0.00%	39.49%	0.00%	6.52%	0.00%	50.94%	0.00%	3.05%	0.00%	100.00%
26	Clearwater Power (WA)	0.00%	4.41%	0.00%	10.92%	0.00%	84.67%	0.00%	0.00%	0.00%	100.00%
30	Columbia Rural Electric Assn (WA)	0.00%	12.79%	0.00%	9.96%	0.00%	77.25%	0.00%	0.00%	0.00%	100.00%
161	Consolidated Irrigation District #19	0.00%	4.42%	0.00%	10.91%	0.00%	84.67%	0.00%	0.00%	0.00%	100.00%
32	Coulee Dam, Town of	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%
33	Cowlitz County PUD #1	0.00%	9.99%	0.06%	8.80%	1.54%	71.69%	0.00%	7.91%	0.01%	100.00%

Washington Utility CI Calculation

WA Utility CI

- Aggregated upstream EF for each fuel type from extracted WA-GREET using 2-WAMX region
- Power generation emissions directly modelled in the calculator, following WA-GREET

 Uses WECC region shares and efficiencies
- All factors extracted from WA-GREET available on EF-Tables sheet in the calculator

WA Utility CI Calculator

- Allows user to select of a specific Utility or a user-defined mix for CI calculation
 - Selection available on Utility_CI sheet
 - Use of user-defined mix allowed at discretion of Department of Ecology and provisions of the regulation

1) Selection of Washington Utility or User Defined mix	1	1 - Washington Utility		
		2 - User Defined Mix		
1.1) Selection of the WA Utility ID for CI Results				
Utility Claimant ID	1	*List of all Utility IDs and na	mes available on Repo	ort Extract sheet
Name of the Selected Utility Mix	Alder Mutual Light			
2) Electric Generation Mix: Data Table	Active Case for CI Calculation			
	Alder Mutual Light	Alder Mutual Light	User Defined Mix	
Residual oil	0.00%	0.00%	0.10%	
Natural gas	0.00%	0.00%	20.46%	
Coal	4.39%	4.39%	10.22%	
Nuclear power	0.00%	0.00%	4.75%	
Biomass	10.92%	10.92%	0.45%	
Others	84.70%	84.70%	64.03%	

Washington Utility CI Results

- Results are shown in disaggregated form similar to WA-GREET
 - Example results shown below, available on Utility_CI sheet

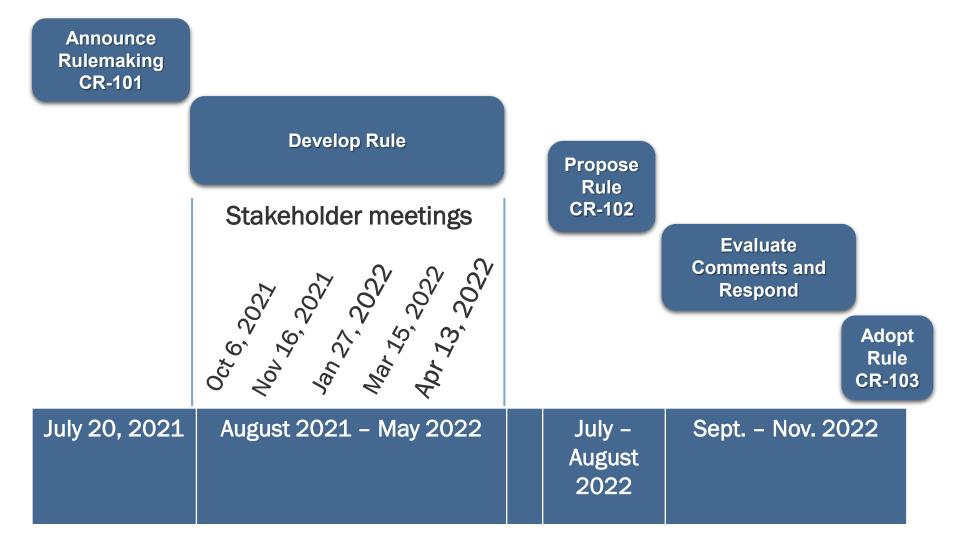
2) Electric Generation Mix: Data Table	Active Case for CI Calculation
	Alder Mutual Light
Residual oil	0.00%
Natural gas	0.00%
Coal	4.39%
Nuclear power	0.00%
Biomass	10.92%
Others	84.70%

3) CI Results for: 1: Alder Mutual Light									
Details Breakdown of CI for Electricity Resources	Residual Oil	NG	Coal	Biomass	Nuclear	Other renewable energy sources	Total, g/MMBtu	Electricty Prod For Stationary Use	Final WTW CI
VOC	0.00	0.00	1.02	0.53	0.00	0.00	1.546	4.69	
CO	0.00	0.00	0.40	2.22	0.00	0.00	2.623	159.64	
CH4	0.00	0.00	20.12	2.43	0.00	0.00	22.543	16.53	
N2O	0.00	0.00	0.00	0.01	0.00	0.00	0.017	2.41	
CO2	0.00	0.00	208.18	1067.53	0.00	0.00	1275.707	13211.42	
Convert to gCO2e/MMBtu	0.00	0.00	716.23	1137.20	0.00	0.00	1853.429	14608.30	
g/MJ	0.00	0.00	0.68	1.08	0.00	0.00	1.76	13.85	15.60
g/kWh							6.32	49.85	56.17

Comments and Questions

Please be brief so everyone has a chance to comment.

5-Minute Break


Rulemaking Timeline & Program Fees

Rachel Assink

Rulemaking Timeline

Program Fees: RCW 70A.535.130

- Ecology may require that program participants pay a fee
- Must adopt rules to establish a process to determine payment schedule and fee amount
- Fee costs must equal, but not exceed, projected costs for developing and implementing the program

Draft Program Fee Approach: 2023

- Participation fee only (all program participants)
 - 70-80% of annual program cost paid by deficit generators
 - 20-30% of annual program cost paid by credit generators
- Fees collected during registration in Q1, 2023

Draft Program Fee Approach: 2024

- Flat participation fee + deficit generation fee
- Participation fee: Same for credit and deficit generators
- Deficit generation fee: Based on deficits generated in 2023 from quarterly reports
- Timeline
 - February 2024: Post fee schedule
 - February-March 2024: 30-day public comment period on fee schedule
 - April 2024: Send invoices

Draft Program Fee Approach: 2025 and Beyond

- Flat participation fee + deficit generation fee
- Participation fee: Same for both credit and deficit generators
- Deficit generation fee: Based on deficits generated for the entire previous year from annual report
- Timeline
 - March 31: Annual compliance reports submitted
 - April: Post fee schedule
 - April-May: 30-day public comment period on fee schedule
 - June: Send invoices

Draft Rule Language

Debebe Dererie

Agenda

- Credit and deficit basic
- Transacting credits
- Fuels to include in credit and deficit calculation
- Calculating credits and deficits
- Demonstrating compliance
- Credit clearance market
- Advance crediting
- Calculating capacity-based credits for ZEV infrastructure

Credit and Deficit Basic

- Carbon intensities:
 - o Regular
 - o Provisional
 - o Temporary
 - o Substitute
- Fuel quantities
- Compliance period
- Metric tons of CO₂e equivalent
- Deficit & credit generation
- Mandatory retirement of credits
- Credit retirement hierarchy

Transacting Credits

- Roles and limits of registered parties
- Credit transfers
- Credit seller requirements
- Credit buyer requirements
- Voiding Credits
- Aggregator
- Illegitimate credits
- Prohibited credit transfer

Fuels to Include in Credit and Deficit Calculation

- Fuels included
- Fuels exempted
- Voluntary inclusion
- When fuels are exported from Washington
- Alternative jet fuels

Calculating Credits and Deficits

- General calculation method
- Fixed guideway vehicles and e-forklifts
- Residential electric vehicle charging
- Incremental credit
 - Renewable Energy Certificates
- Demonstrating compliance

Demonstrating Compliance

- Compliance Demonstration:
 - Annual compliance report
 - Retired credit = compliance obligation
- Compliance obligation = Deficit generated + Deficit carried over
- Credit balance = (CreGen + CreAcq + CreCO) (CreRet + CreSol + CreOH)
- Small deficits \leq 5 percent
- Extended credit acquisition period
- Non-small deficits CCM

Credit Clearance Market

- General
- Maximum price
- Acquisition of credits
- Selling credits
- Operation of the CCM
- Deficits amended compliance report
- Root cause analysis

Advance Crediting

- General provisions
- Eligibility
- Applications for advance credits
- Approval
- Issuance of advance credits
- Payback period
- Reporting requirements
- Overall limitation on advance credit

Credits for ZEV Infrastructure

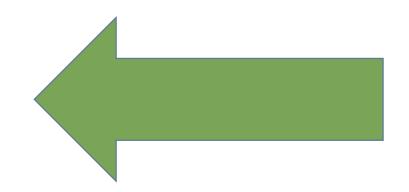
- Pathway eligibility for HRI and FCI public access, due date
- Application requirements
 - Capacity based on potential demand, capacity limits
- Application approval process 2.5% of deficits
- Generation of credits CI and renewable content threshold
- Calculation of credits cap to credit revenue
- Reporting and recordkeeping requirements
 - Cost and revenue
- Applications for expanded HRI/FCI refueling capacity

Comments and Questions

Please be brief so everyone has a chance to comment.

Next Steps & Wrap Up

Rachel Assink


Comment Submittal & Next Steps End of informal public comment period: April 25, 2022 Comments online and read others' comments: https://aq.ecology.commentinput.com/?id=D pgZ3

Next Steps

Propose rule: July 2022

Formal public comment period:

July – August 2022

For More Information

Learn More

• Visit the rulemaking web page: https://ecology.wa.gov/Regulations-Permits/Laws-rulesrulemaking/Rulemaking/WAC-173-424-455

Stay Informed

• Join the email list:

https://public.govdelivery.com/accounts/WAECY/subscriber/ new?topic_id=WAECY_142

Contacts

]	
Rulemaking Lead	Technical Lead		Fuel Pathways Specialist
Rachel Assink	Abbey Brown		Debebe Dererie
rachel.assink@ecy.wa.gov	abbey.brown@ecy.wa.gov		debebe.dererie@ecy.wa.gov
425-531-3444	360-819-0158		360-688-8103

Climate Policy Section Manager Joel Creswell joel.creswell@ecy.wa.gov 360-972-5035 Outreach & Engagement Specialist Janée Zakoren janee.zakoren@ecy.wa.gov 360-280-7128

Thank you for attending

