

The Science of Risk Modeling and Modeling Approaches

Modeling Team

JD Ross Leahy (Presenter), Adam Byrd, Alex Suchar, Melba Salazar-Gutiérrez

Legislative background

- -- ESHB 1578 was passed in 2019 to reduce the risk of oil spills, and protect Southern Resident Killer Whales
- -- Ecology's Spills Program tasked to undertake or assist with multiple policy initiatives in the bill, including the development of an oil spill risk model

Vesse	el Movement Module	Vessel Encounter Module	Accident Modu	le	Oil Outflow Module	
• Data • Proc	enges availability ess uncertainty	/				
						30

	Quantitative • Measurable & numerical results
	Covered vessels • Vessel type specific
Decuivemente	Tribe and stakeholder involvement • Ongoing outreach and transparent approach
for the model	Account for changes in traffic • Explicit modeling of vessel traffic
	Evaluate risk reduction measures • Explicit modeling of accident causes
	Updatable • Based on data
	37

	Requests	Model Structure
	Consider USCG data on number and size of spills from oil barges	Uses historical data
A flexible framework	Deal with challenge of a lack of incidents to calibrate on	Uses stochastic simulation
	Use engineering analysis to consider force needed to cause oil outflow	Includes oil outflow module
		38

	Requests	Model Structure
	Consider the natural distribution of other tugs besides an ERTV	The simulator pulls from the historical distribution
A flexible framework	Consider distribution of ships transiting in irregular patterns	The simulator pulls from the historical distribution
	Differentiate between laden/unladen transits	Simulated vessels are uniquely represented
	Include separate transit lines for tugs	Vessel typology allows for this

	Requests	Model Structure
	Include fate, transport, and effects of a spill	Discrete model outputs
A flexible framework	Compatibility with other models	Discrete model outputs
	More robust treatment of spill consequence and impact	Initial description of consequence
		40

For the second se