

Oil Outflow Module

September 22th, 2021

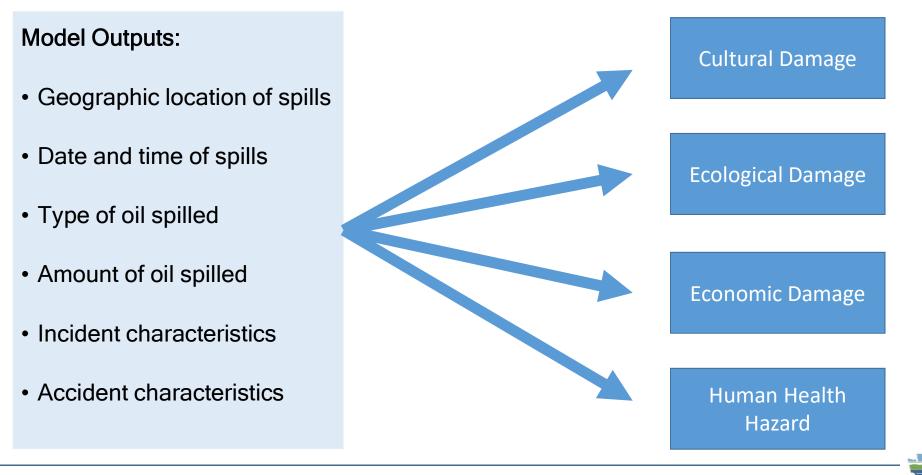
Model Development Team

Adam Byrd, Alex Suchar, James Murphy, Alex Hess, JD Ross Leahy

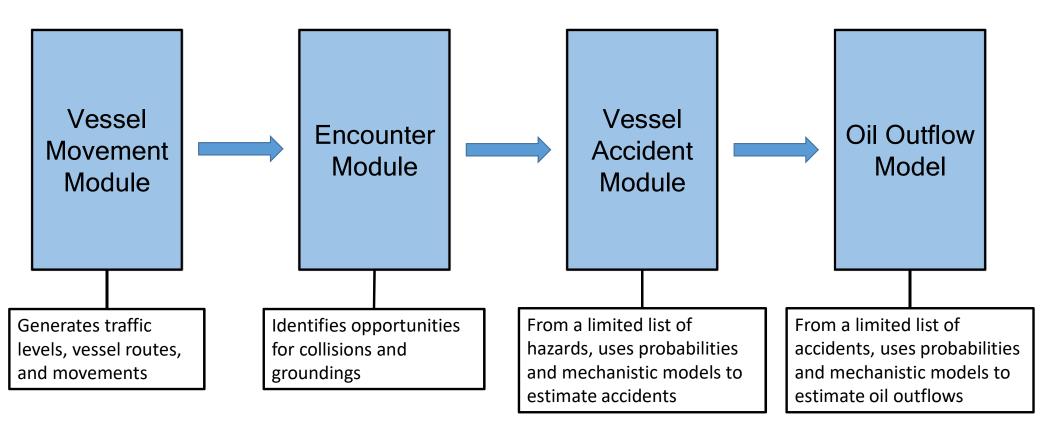
Today's outline

Legislative background

- ESHB 1578 was passed in 2019 to reduce the risk of oil spills, and protect Southern Resident Killer Whales
- Ecology's Spills Program tasked to undertake or assist with multiple policy initiatives in the bill, including the development of an oil spill risk model



Describing oil spill risk


Scenarios	 Hazard identification: collision, allision, grounding, etc.
Probability	 How likely is each hazard?
Consequences	 If an accident happens, how likely is that an oil spill occurs, where will it occur, and what volume and type of oil will be released?

6

Consequence

Modeling Approach

8

Oil Outflow

After determining an accident has occurred

- Does oil enter the water?
- How much oil enters the water?

Why ask if oil enters the water?

- Some hazards may not necessarily result in a spill, e.g.
 - Allisions
 - Collisions
 - Groundings

Decoupled From Hazard Probability

Probability of Oil Entering the Water

- Two step process
- Hazard + Outflow

Benefits of Decoupling

- Hazard occurrence can be an output of the model
- We can use different populations of interest for hazards vs outflows

Approach to Modeling Oil Outflow

Statistical

- Data based
- Derived from historical occurrences

Mathematical/Mechanistic

• Theory based

Mathematical/ Mechanistic Approach

Primary Approaches in Literature

- Damage estimation
 - Damage Location and Extent
- Outflow dynamics
 - Rates of oil flow based on the location and size of the breach

Hybrid Approaches

- Models of simulated results of other models
- Only available mechanistic models only cover groundings and collisions for tank vessels.

Mathematical/Mechanistic Approach

Strengths

- Better at representing less common events
- Allow us to incorporate accident and vessel characteristics
 - E.g. Rocky bottom, double hull, etc.

Weaknesses

• Rely on a number of assumptions

Plan for Mechanistic Approach

Hybrid Method

- Tank Vessels: Product Tankers, Crude Tankers, ATBs, Towed Oil Barges
- Collisions and Groundings

Methodology

- Parallel to VTRA methods
- Simulation using SIMCOL and DAMAGE models
- Regression analysis to estimate:
 - damage extent given ship velocities, ship masses, and collision angles
 - the probability that oil spill occurred

Parameters for Mechanistic Approach

To be calculated from model outputs

- Vessel and accident characteristics
 - E.g. Vessel mass and speed, collision angle, etc

To be pulled from existing data

- Tank configuration
- Bottom characteristics

To be estimated

- Oil cargo onboard
- Fuel onboard
- Oil distribution between tanks

Statistical Approach

Data-based approach

- Establish population of interest
- Count occurrences (e.g. oil spill)
- Count opportunities (e.g. grounding)

For all remaining vessel and hazard types

- All non-tank vessel accidents
- All tank vessel accidents that are not collisions, allisions, and groundings

Plan for Statistical Approach

Probability of Oil Spill

- Establish population of interest
- Count occurrences (e.g. oil spill)
- Count opportunities (e.g. grounding)

Quantity Estimate

- Review occurrences (oil spills)
- Review spill volumes
- Build a function for spill volume based on potential factors (e.g. vessel type, oil capacity, etc)

Population of Interest for Oil Spill and Oil Outflow

Should be large

• We can't rely on "zero failure methods" in the case of insufficient data

Less sensitive to geography

- Spill occurrence and quantity have more to do with vessel and accident characteristics
 - E.g. vessel size, speed, etc

Some sensitivity to temporal scope

• Recent rule changes for fuel tank protection

Limitations and Potential Challenges

Limitations

- Spills modeled as "instantaneous"
- Mechanistic model can't account for post accident interventions

Potential Challenges

Data limitations could limit factor evaluation

Current Status of Model Development

Modeling Approach

- Oil Outflow presentation is milestone in development of our modeling approach
- All four modules sketched out and in place

Next Steps

 Coding, research and statistical analysis to put the model pieces together and fill in the details

Current Status

Vessel Movement Module

- Ongoing coding of movements associated with anchoring stays, Turn point and Rosario "one-way" rules
- Initial progress on coding movements of dependent vessels

Vessel Encounter Module

• Initial coding complete for calculating domain sizes for both QSD Domain and Pentagonal Domain

Upcoming Outreach

Modeling Development

- Outreach as needed to communicate progress and solicit feedback
- Targeting Spring 2022

Analysis Projects (ERTV and Tug Escorts)

- Draft Scopes of Work for ERTV and Tug Escort out for comment
- Webinars and events planned for 2022

Discussion logistics

File View Help	⊕ -	_DIJ×
▼ Audio		ប
	Sound Check	< ∎∎ ?
🧕 👝 🧿	Computer audio	
1 '- C	Phone call	
🖌 🤌 мит	TED	
Transmit	(Plantronics Savi 7xx-N	1) 🗸
u(>)) 🔳 🖿		
Receive ((Plantronics Savi 7xx-M)	\sim
Talking: Liz D	avis	
 Questions 		ប
[Enter a question	n for staff]	
[Enter a questior	n for staff]	
[Enter a questior	n for staff]	Send
		Send
We	ebinar Housekeeping	Send
We		Send
Wa	ebinar Housekeeping	Send

23

Contact Info

JD Ross Leahy

Maritime Risk Modeling Specialist Prevention Section

Spill Prevention, Preparedness, and Response Program

> jd.leahy@ecy.wa.gov Work Cell: 425-410-9806

