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Purpose of the Error Analysis 
 
Water Quality Policy 1-11 is the policy that guides listing decisions for Washington’s Water Quality 
Assessment to meet Clean Water Act requirements for sections 303(d) and 305(b).  During updates to 
Policy 1-11 in 2012, several comments were received about the risk of listing errors for waters that were 
placed on the 303(d) list based on limited data.   
 
The comments related to this issue fell into three areas: 
 

1. Concerns that the Policy 1-11 guidance does not minimize false positives (which result in 
unnecessary TMDL costs), or false negatives (which result in continued environmental 
degradation).  Some commenters suggested using the binomial distribution statistical approach 
as a basis for determining impairment. 
 

2. Concerns that the listing policy requires more data to move from Category 5 to Category 1 than 
to get listed in Category 5.  Commenters felt that the assessment policy should require the same 
level of data to list areas in Category 1 as it does to determine the initial Category 5 impairment. 
 

3. Concerns that Ecology should reconsider use of an instantaneous single grab-sample value to 
represent an average value, especially a four-day average (for example chronic aquatic life 
criteria for metals), which could lead to listings where there is no demonstrated exceedance of 
the water quality standard. 

 

Ecology responded to the above issues in the response to public comments on the 2012 Policy 1-11 
update and committed to conducting a “Type I and Type II Error Analysis” to provide information on the 
risk of false positives (Type I error) and false negatives (Type II error) relating to guidance in Policy 1-11.   

The Water Quality Program requested that Environmental Assessment Program (EAP) technical staff 
analyze the risk of error associated with the three types of comments listed above. The analyses 
required the establishment of simplifying assumptions due to the underlying environmental and policy 
complexities. Therefore the conclusions of the analyses must be considered in this limited context. 
Nonetheless, the results are being shared as a basis for further discussion and review on potential 
revisions to improve Policy 1-11.  The analyses can be found in the following three chapters attached: 

1. Type I and Type II error probabilities for pH, temperature, and dissolved oxygen listings 
2. Unequal data requirements for Category 5 and Category 1 
3. Use of instantaneous measurements to represent multi-day averages associated with chronic 

criteria for toxic parameters 

Each of the three issues and the respective analyses are discussed below. 
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Type I and Type II Error Probabilities 

Background 
 

In the 2002-2004 Assessment listing cycle, Ecology used a binomial distribution method in an effort to 
minimize false positives. Unfortunately, the approach did not work uniformly among different types of 
pollutant parameters and resulted in significant inconsistencies. EPA’s 2006 Integrated Report guidance1 
states that when the percent threshold of a pollutant is clearly expressed in the water quality criteria 
(such as the geometric mean and 10 percent exceedance rule for bacteria) then the methodology 
written in the criteria should be used. Hence, Ecology discontinued use of the binomial method for the 
next listing cycle (2006-2008).  EPA and others supported removal of this methodology from our listing 
process because the Type II error rate for small sample sizes is higher for the binomial distribution in 
comparison to the EPA “raw score” method2, and therefore it was believed that the binomial method 
would not be protective enough given the high frequency of small datasets for waterbodies across the 
state. 

To better deal with specific parameter characteristics in the 2006 Policy 1-11 revisions, Section 8 of the 
Policy was created to include specific listing methodologies based on the different pollutant parameters. 
The binomial distribution method currently is not used for any parameter in the Water Quality 
Assessment process.  The ten percent exceedance rate for listing as suggested in EPA guidance for 
assessing several conventional parameters under the Aquatic Life Use criteria is used as well as a 
requirement that a minimum of three exceedances be observed before placing a waterbody on the 
303(d) list.  

1 2006 integrated report guidance.  Washington, DC: U.S. Environmental Protection Agency.  Available: 
http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/2006IRG_index.cfm. 
 
2 The EPA 2002 guidance suggested a simple rule which is called the "10% rule" or, in some publications, the "raw 
scores" method.  This method is to determine that a waterbody is impaired if 10% or more of the sample 
measurements exceed the applicable water quality standard. 
 

 

Basis for Analysis and Underlying Assumptions 
 

This analysis focused on the probability of listing waters based on meeting a two-part decision rule for 
“grab sample” or instantaneous measurements of pH, temperature, and dissolved oxygen as specified in 
Policy 1-11. Category 5 requires: (a) at least one year within the past 10 years with at least 10% of 
samples (set of measurements within a calendar or water year) exceeding standards and (b) at least 
three exceedances (measurements exceeding standards) over the most recent 10-year period.    

The first part of the above decision rule for listing comes from the U.S. Environmental Protection Agency 
(EPA) 2002 guidance that suggested a simple rule which is called the "10% rule" or, in some publications, 
the "raw scores" method.  The "10% rule" method is to determine that a waterbody is impaired if 10% 
or more of the sample measurements exceed the applicable water quality standard.  More than one 
year's worth of data is treated as a single dataset.   

http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/2006IRG_index.cfm


Policy 1-11 Error Analysis  p. 3 December 2016 

 

EPA has stated that no true exceedances of a criterion are allowable, unless one can show that human 
activities did not cause or contribute to the exceedance. Furthermore, when numeric criteria contain a 
built-in frequency of exceedance component, as is the case with dissolved oxygen and temperature 
criteria in Washington State, then the evaluation of compliance with the criteria cannot use a different 
frequency of exceedance. The only “allowable exceedances” are those attributable to error in 
measurement, analysis, and reporting. EPA’s “raw score” method indicates that 10% of the samples may 
be attributed to error. It is important to note that this is entirely different than allowing 10% of the 
population to exceed a criterion. 
 
The first part of the decision rule in Policy 1-11 is similar to the "raw scores" method but assumes each 
year (calendar year or water year, depending on the parameter) is independent of the others and that 
the exceedances counter starts again at zero at the beginning of the parameter year. 

Because the Type I error rate of the "raw scores" method is both high (especially for small sample sizes) 
and uncontrolled, Policy 1-11 included the second part of the decision rule in an effort to reduce the 
Type I error rate. 

A complicating factor is that the number of samples (total or per year) to be used for the Water Quality 
Analysis is not known in advance.  To determine the number of ways that exceedances can be observed 
for the likely case in which the number of samples varies by year would require advanced mathematics 
beyond what was feasible for this analysis. However, it was possible to calculate listing probabilities for 
the special case in which the sample size and population proportion are the same for all ten years. 

For this analysis, a general equation for the probability of listing based on the two-part decision rule was 
derived, as well as the "safety margin" resulting from the addition of the second part of the decision 
rule. Listing probabilities were calculated for a range of population proportions out of compliance and 
for all sample sizes from 1 per year to 1 per day.  From the listing probabilities, it is possible to calculate 
the theoretical Type I and Type II error rates. 

The treatment of sampling years as independent in order to mitigate against the effects of extraordinary 
conditions such as drought is another complication of the policy.  The effects of this assumption of 
independence have not yet been studied. 

 

Conclusions 
 
Some generalizations about the Type I and II error rates for the current two-part decision rule can be 
made.  
 

 The current requirement for at least three exceedances to list a waterbody as impaired affects 
only cases in which the sample size for all years is 20 or less, and effectively only for sample sizes 
10 or less.  This requirement strongly reduces the chances of a Type I error for very small sample 
sizes (e.g. fewer than 10 samples per year) when compared to the “10% rule”, but strongly 
increases the risk of Type II error 

 

 The closer the actual proportion out of compliance is to the hypothesized population 
proportion, the higher the Type I error rate will be, because it is more difficult to tell if the 
observed proportion is different than the hypothesized proportion. For example, if testing the 
hypothesis that the population exceedance rate is 10% or more, then the Type I error rate (false 
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positive – determining that the waterbody is impaired when it is in fact not impaired) for the 
two-part decision rule is always high (e.g. >20%) above a samples size of 20.  

 

 Type II error rates are primarily a function of sample size and the size of the effect that one is 
seeking to detect. The Type II error rate (false negative– determining that the waterbody is not 
impaired when it is in fact impaired) for the two-part decision rule is high at low samples sizes 
and declines rapidly as sample sizes increase.  
 

See Appendix 1:  Type I and Type II Error Probabilities for pH, Temperature, and Dissolved Oxygen 
Listings. 
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Unequal Data Requirements for Category 5 and Category 1 

Background 
 

Policy 1-11 includes guidance for using data to place waterbody segments into the 5 categories for the 
different pollutant parameters in Section 8 of the policy.  Determining that a waterbody is not meeting 
standards requires much less monitoring data because relatively few measurements can provide a high 
degree of statistical confidence that criteria are not being met. However, to determine that a waterbody 
is meeting standards requires much more data to confidently determine that a criterion is met under all 
conditions. Pollutants that are highly variable such as bacteria, or other parameters that naturally vary 
throughout the day and season such as temperature, dissolved oxygen, and pH, require a greater 
sampling effort and an appropriate sample design to show that the waterbody is meeting standards 
during the critical period typical of that waterbody. A lack of criteria exceedances alone in a dataset 
does not necessarily equate to meeting water quality standards. A waterbody may be in compliance 
with standards during specific times of a day, season, or outside of a critical period for a given condition 
but may not be in compliance at other times. For example, if a dissolved oxygen dataset for a waterbody 
contains 500 measurements collected between 10 a.m. and 6 p.m. and shows no criterion exceedances, 
one cannot conclude that dissolved oxygen criteria are being met because the dataset does not include 
measurements from the early morning when dissolved oxygen typically reaches its lowest point during 
the day. For this analysis EAP staff analyzed why, from a statistical perspective, the sample size required 
to “de-list” a waterbody is significantly higher than the sample size required to initially place a 
waterbody on the 303(d) list.  

 

Basis for Analysis and Underlying Assumptions 
 

The numbers of samples required for listing a waterbody as impaired and delisting a no-longer-impaired 
waterbody are different.  An analogy to this process would be a medical diagnosis for cancer.  It takes 
only a few tests to confirm the presence of cancer.  After going through treatments, a number of tests 
over a long period of time are needed to confirm, to a high degree of confidence, that the cancer has 
been cured.  The same applies to pollutants in the water – only a few samples are needed to confirm the 
presence; however, many more samples are needed to confirm that the pollutant no longer exists in the 
same waterbody. 

The difference in the numbers of samples is explained by statistical theory.  The most commonly used 
model for the occurrence of exceedances is a binomial probability distribution, which has two 
parameters, 𝑛 = the sample size (number of measurements) and 𝑝 = the true proportion of the 
population which is out of compliance.   We cannot know 𝑝, but we can estimate it by dividing the 
observed number of exceedances into the number of samples.  We can also calculate a confidence 
interval based on the number of exceedances found in the sample size.  The hypothesis is tested using 
these values. 
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Conclusions 
 

Appendix  2 demonstrates, from a statistical perspective, why the sample size required to delist a no-
longer-impaired waterbody is significantly higher than the sample size required for listing an impaired 
waterbody.  For example, when using an allowable exceedance rate of 10% for a population, the 
minimum combination of sample size and number of exceedances to be able to conclude with 95% 
confidence that a waterbody is impaired is if you had only two measurements and both of them were 
exceedances.  On the other hand, it would take a minimum of 29 measurements and 0 exceedances to 
be able to say with 95% confidence that a waterbody is not impaired  

The reason that a larger sample size is required to delist a no-longer-impaired waterbody than to list an 
impaired waterbody is a function of the hypotheses being tested, the statistical distribution type 
assumed for the population, and the statistical significance level used, as well as the mathematical 
characteristics of a ratio. 

See Appendix 2:  Unequal Data Requirements for Category 5 and Category 1. 
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Use of Instantaneous Measurements to Represent Multi-day Averages 

Background 

 
Comments were received that expressed concerns that Ecology should reconsider use of an 
instantaneous single grab-sample value to represent an average value, especially a four-day average (for 
example chronic aquatic life criteria for metals), which could lead to listings where there is no 
demonstrated exceedance of the water quality standard. 

 

Basis for Analysis and Underlying Assumptions 
 
Based on comments concerning the use of instantaneous samples to represent toxics substance criteria 
(TSC) exceedances for aquatic life, this analysis explored how representative a single “grab” sample is of 
multi-day averages of toxics contamination.  The analysis addresses only a single aspect of the complex 
situation of 303(d)-listing criteria and the data available.  Specifically, the analysis focused on whether 
single samples can be used to evaluate toxics contamination for which the criteria are based on 4-day 
running averages. 
 
There were no actual datasets representing the two measurements to be able to work with.  Therefore 
the general approach involved simulating hypothetical “observed” contaminant concentrations that 
corresponded to a waterbody just meeting the chronic water quality standard and determining how 
often the standard was not met.  The basis for the simulation was the 1991 EPA technical guidance on 
derivation of acute and chronic water quality standards for toxic contaminants. 
 
Large numbers of random values were generated from a probability distribution defined by the long-
term average set at the chronic water quality standard for a given contaminant to represent single 
"grab" samples.  Running averages of four single values for the entire sequence were calculated to 
represent "4-day running average" concentrations.  The reason for using averages set at the standards is 
to simulate the worst-case scenario for waterbodies actually in compliance. 
 
Both the individual "1-day" values and the "4-day average" values were compared to the chronic water 
quality standard for that particular contaminant, and the percent of the single and averaged values 
exceeding the standard was calculated.  Such a simulation was repeated for many different toxic 
contaminant standards. Finally, the exceedance rates (percent exceedance) of the "1-day" and "4-day 
average" observations for the collection of all the contaminants simulated were statistically compared. 
It should be noted that the underlying assumptions of lognormality and coefficient of variation value 
have not been tested with real data; therefore, the results from the simulation are provisional.   The 
simulation also did not take into consideration how the criteria were established in the first place, and 
so the lognormal distribution used in the simulation may not be the same distribution used to develop 
the standards. Several other caveats on the limitations of the simulation results are listed in Appendix 3. 
 
This analysis necessitated the application of a simplifying assumption that the observed toxics values are 
relatively constant. Based on this assumption, the analysis shows how single samples have a much 
higher chance of exceeding a criterion than a 4 day average. However, toxic parameters in the 
environment often do not display a relatively constant distribution in time and space. Recent studies1,2,3 

have shown clear patterns of diel cycling (and therefore serial correlation) for certain metals and 
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metalloids in streams. If an underlying diel cycle in a parameter exists, then a single sample value may 
be higher or lower than a 4-day average depending on the time at which sampling occurs. The time of 
day at which a single sample of metals is collected can affect how representative it is of a 4-day average 
value since some metals appear to peak at night while others appear to peak during the afternoon. For 
example, if the concentration of a metal undergoing diel cycling tends to be lowest between 8am and 
5pm when most sampling tends to occur, then a single sample would consistently be lower than the 4-
day average concentration in the waterbody. If the concentration of a metal peaks between 8am and 
5pm, then a single sample would consistently be greater than to the 4-day average concentration in the 
waterbody. Limitations to the application of statistical theory to toxics data must be recognized as we 
continue to assess compliance with water quality criteria despite not having a complete understanding 
of diel cycling in toxic parameters for different waterbody types within Washington State.  

 

Conclusions 
 
The model used in this analysis indicates that individual daily observations have a much greater chance 
of exceeding the chronic TSC than 4-day averages do.  The exceedance rate is a function of the assumed 
lognormal percentile on which the long-term average (LTA) is based.  On average: 
 

o For LTAs based on 90th percentiles, 1-day observations are twice as likely to exceed the chronic 
standards as are the 4-day running averages. 

o For LTAs based on 95th percentiles, the 1-day exceedance rate is almost three times that of 4-
day running averages. 

o For LTAs based on 99th percentiles, 1-day observations are more than seven times as likely as 
the 4-day running averages to exceed the chronic standards. 

 
These results are based on a constant distributional model excluding autocorrelation.  Real-world 
exceedance rates of single observations may differ due to autocorrelation and changing conditions. 
 
 
1Nimick, D.A., Gammons, C.H., Parker, S.R., 2011, Diel biogeochemical processes and their effect on the aqueous 
chemistry of streams: A review. Chemical Geology, v. 283, p. 3-17.  
 
2Nimick, D.A., Cleasby, T.E., McCleskey, R.B., 2005, Seasonality of diel cycles of dissolved metal concentrations in a 
Rocky Mountain stream. Environmental Geology, v. 47, p. 603-614. 
 
3Nimick, D.A., Gammons, C.H., Cleasby, T.E, Madison, J.P., Skaar, D., Brick, C.M., 2003, Diel cycles in dissolved metal 
concentrations in streams: Occurrence and possible causes. Water Resources Research, v. 39, no. 9, citation no. 
1247, doi:10.1029/WR001571. 
 

See Appendix 3:  Use of instantaneous Measurements to represent Multi-day Averages (such as chronic 

metals). 
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APPENDIX 1 

Type I and Type II Error Probabilities for pH,  

Temperature, and Dissolved Oxygen Listing Policy 
  

Methods 
The first task was to understand 303(d) listing policies, the second was to develop statistical models, and 

the third was to compute probabilities. 

This exercise focused on only a single rule which affects the listing of waters for pH, temperature, and 

dissolved oxygen.  That rule lists a waterbody as impaired based on two criteria (Ecology, 2012): 

a) At least one year within the past 10 years with at least 10% of samples (set of measurements within 
a calendar or water year) exceeding standards. 

b) At least three exceedances (measurements exceeding standards) over the most recent 10-year 
period. 

Statistical model 

The statistical model must be able to handle situations in which the number of samples is unknown until 

the data are received.  For a given waterbody or waterbody segment, the number of measurements 

submitted may vary from none in a given year to essentially continuous, the latter boiled down to one 

per day, i.e., from 0 to 365 (366 for a leap-year).  Furthermore, to mitigate against anomalies such as 

drought years, Ecology treats each year separately in water quality assessments. 

For this analysis, it was not necessary to define what constitutes an exceedance.  Rather, this analysis 

was concerned only with what to do once one has samples and exceedances.  The definition of an 

exceedance varies by parameter; e.g., single grab samples vs. 4-day averages vs. 7-day maxima or 

minima, etc., and is a separate matter. 

 

Nothing could be found in the primary or grey literature which addressed such a compound problem.  

The U.S. Environmental Protection Agency (EPA) promulgated a simple rule which is called the "10% 

rule" or, in some publications, the "raw scores" method.  The "10% rule" method is to determine that a 

waterbody is impaired if 10% or more of the sample measurements exceed the applicable water quality 

standard (EPA, 2002).  That same document did introduce the reader to the "binomial method" (treating 

the number of exceedances within a set of sample measurements as a binomial random variate), but 

relied on normal approximations (EPA, 2002).  In addition, more than one year's worth of data is treated 

as a single dataset, not separate datasets for each year. 

 

The first criterion in the above Ecology policy is similar to the "raw scores" method but assumes each 

year (calendar year or water year, depending on the parameter) is independent of the others and that 

the exceedances counter starts again at zero at the beginning of the parameter year. 

 

Because the Type I error rate of the "raw scores" method is both high (especially for small sample sizes) 

and uncontrolled (Smith et al., 2001), for the 2014 Water Quality Assessment, Ecology added the second 

part of the policy (at least 3 exceedances) in an effort to reduce the Type I error rate. 



Policy 1-11 Error Analysis  p. 12 December 2016 

 

A general equation for the probability of listing based on these two criteria was derived (details in 

Appendix 1A). From this equation, it is also possible to quantify the "safety margin" resulting from the 

addition of the second criterion.   

Modeling 10 years of data 
If exceedances observed in a year's worth of sampling are modeled as following a binomial distribution 

with fixed distributional parameters 𝑛 (sample size) and 𝑝 (proportion of the population out of 

compliance), ten years' worth of data would be modeled as the product of 10 independent binomial 

distributions, each with unique 𝑛𝑖 and 𝑝𝑖, 𝑖 = 1, 2, . . . , 10. 

In general, if 𝑋𝑖  is a random variable for the number of exceedances in year 𝑖, 𝑖 = 1, 2, … , 10, then 

𝑃(𝑙𝑖𝑠𝑡) = 𝑃(𝑡𝑜𝑡𝑎𝑙 #𝑜𝑓 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠 ≥ 3 𝐴𝑁𝐷 # 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠 ≥ 10% 𝑖𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑦𝑒𝑎𝑟) 

= 𝑃(∑ 𝑋𝑖
10
𝑖=1 ≥ 3 𝐴𝑁𝐷 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑋𝑖 ≥ 10% 𝑜𝑓 𝑛𝑖)  

= 1 −  𝑃(∑ 𝑋𝑖
10
𝑖=1 ≤ 2 𝑂𝑅 𝑛𝑜 𝑋𝑖 ≥ 10% 𝑜𝑓 𝑛𝑖)  

= 1 −  [
𝑃(∑ 𝑋𝑖

10
𝑖=1 ≤ 2) + 𝑃(𝑛𝑜 𝑋𝑖 ≥ 10% 𝑜𝑓 𝑛𝑖)        

    − 𝑃(∑ 𝑋𝑖
10
𝑖=1 ≤ 2 𝐴𝑁𝐷 𝑛𝑜 𝑋𝑖 ≥ 10% 𝑜𝑓 𝑛𝑖)

]  

 

Details are given in Appendix 1A. 

 

Computation 
 

To determine the number of ways that exceedances can be observed, especially given that the sample 

size is not known in advance, requires use of number theory combinatorics and is beyond what it was 

feasible to accomplish for this task.  However, it was possible to calculate listing probabilities for the 

special case in which the sample size and population proportion are the same for all ten years.  An Excel 

spreadsheet calculating Probability of Listing based on meeting two criteria was developed:  (a) at least 

one year within the past 10 years with at least 10% of samples (set of measurements within a calendar 

or water year) exceeding standards and (b) at least three exceedances (measurements exceeding 

standards) over the most recent 10-year period, calculated for select values of 𝑛 and 𝑝 for the special 

case in which all 10 years have the same sample size (𝒏) and same population proportion out of 

compliance (𝒑), using the formula derived in Appendix 1A.  The Excel spreadsheet calculated P(list) for 

the special case in which the 𝑋𝑖  are distributed as identical Binomial(𝑛𝑖, 𝑝𝑖), i.e., all 𝑛𝑖 are equal and all 

𝑝𝑖  are equal, for 𝑛𝑖 = 1 𝑡𝑜 366 and 𝑝𝑖 = 0.005 𝑡𝑜 0.15 𝑏𝑦 0.005.  For a copy of the Excel spreadsheet, 

please send an email request to 303d@ecy.wa.gov.  

 

For all values of 𝑛 from 1 to 366 and for values of 𝑝 from 0.005 to 0.15 by 0.005 (with all years having 

the same values of 𝑛 and 𝑝), the BINOM.DIST function in Excel was used to compute listing probabilities 

(For a copy of the Excel spreadsheet, please send an email request to 303d@ecy.wa.gov) according to 

mailto:303d@ecy.wa.gov
mailto:303d@ecy.wa.gov
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the formulae derived in Appendix 1A. Those computed probability values are graphed in Figure 1 for 

select values of 𝑝.   

Evaluation 
The following sections illustrate the derived listing probabilities for a range of values of 𝑝, demonstrate 

the effect of adding the 2nd criterion, and show the Type I and Type II error rates for select values of 𝑛 

(number of samples) and 𝑝 (hypothesized population proportions). 

Probability of listing based on both criteria 
Figure 1 illustrates the derived listing probabilities for hypothesized population proportion  

𝑝 = 0.01, 0.02, … , 0.10 for all values of 𝑛 from 1 to 366.  Note the effect of the "10% rule" criterion in 

the minimization of P(list) at each "breakpoint" (multiple of 10), jump increase for the next-larger 

sample size (𝑛 = breakpoint + 1), and subsequent decrease to the next breakpoint. 

 

Figure 1.  Probability of Listing based on meeting two criteria:  (a) at least one year within the past 10 

years with at least 10% of samples (set of measurements within a calendar or water year) exceeding 

standards and (b) at least three exceedances (measurements exceeding standards) over the most recent 

10-year period, calculated for all values of 𝑛 from 1 to 366 and select values of 𝑝 for the case in which all 

10 years have the same sample size (𝑛) and same population proportion out of compliance (𝑝), using the 

formulae derived in Appendix 1A. 

To reiterate, these derived probabilities are for the case in which the sample sizes and population 

proportion out of compliance are the same for all 10 years, i.e. 𝑝𝑖 = 𝑝 and 𝑛𝑖 = 𝑛.  To calculate listing 

probabilities for the more likely case of 𝑛𝑖 varying by year would require combinatorics that are beyond 

what is feasible to do for this paper.  To calculate listing probabilities for varying 𝑝𝑖  by year – but same 

𝑛𝑖 for all years – would be easier but still computer-intensive and time-consuming. 

Effect of Requiring at Least 3 Exceedances 
The second criterion, that of at least three exceedances (measurements exceeding standards) over the 

most recent 10-year period, was added with the intention of reducing the Type I error rate of the rule 
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that when at least 10% of samples (set of measurements within a calendar or water year) exceed 

standards for at least one year within the past 10 years.  This section examines the effect of that 

addition. 

The solution is part of the derivation of the probability of listing based on both criteria (Appendix 1A). 

It turns out that the effect of adding the requirement that there be at least three exceedances is 

applicable only in cases in which all 𝑛𝑖 ≤ 20 (Appendix 1A).  The second criterion reduces the listing 

probability considerably for sample sizes 10 or less and very little for sample sizes 11 to 20 (Figures 2 

and 3). 

 

Figure 2.  Listing Probabilities (solid line) with and without (dashed line) the second criterion of at least 

three exceedances (measurements exceeding standards) over the most recent 10-year period, for the 

case in which all 10 years have the same sample size (𝑛) and same population proportion out of 

compliance (𝑝), for select values of 𝑝.  Probabilities were calculated with the formulae derived in 

Appendix 1A. 
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Figure 3.  Decrease in Probability of Listing from that in Figure 1 based on the second criterion: at least 

three exceedances (measurements exceeding standards) over the most recent 10-year period, for the 

case in which all 10 years have the same sample size (𝑛) and same population proportion out of 

compliance (𝑝), for select values of 𝑝.  Probabilities were calculated with the formulae derived in 

Appendix 1A. 

Probabilities of Type I and Type II Error 
From the probabilities calculated for all values of 𝑛 from 1 to 366 and select values of 𝑝 for the case in 

which all 10 years have the same sample size (𝑛) and same population proportion out of compliance (𝑝), 

it is possible to determine the probabilities of Type I and Type II error, i.e., of incorrectly listing a 

waterbody which is actually in compliance (Type I error) or incorrectly failing to list a waterbody which is 

actually out of compliance (Type II error)..  These are the same probabilities calculated in the Excel 

spreadhseet as those graphed above, but plotted as a function of 𝑝 instead of a function of 𝑛. 

If one is testing the hypotheses 𝐻0: 𝑝 ≤ 0.05 𝑣𝑠. 𝐻1: 𝑝 > 0.05, then 𝑃(𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑙𝑖𝑠𝑡 | 𝑝 <

0.05) and 𝑃(𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟) = 𝑃(𝑑𝑜 𝑛𝑜𝑡 𝑙𝑖𝑠𝑡 | 𝑝 > 0.05) = 1 −  𝑃(𝑙𝑖𝑠𝑡 | 𝑝 > 0.1), which are 

illustrated in Figures 4 and 5, respectively, for select values of 𝑛. 

The sample sizes selected for illustration, and the rationale for choosing them, are:  10 (first breakpoint 

for 10% rule), 12 (one sample per month), 30 (one sample/day for 1 month), 52 (one sample/week), 75 

(one sample/day for 2.5 months), 90 (one sample/day for 3 months), 120 (10 samples/month, or one 

sample/day for 4 months), 180 (one sample/day for 6 months), 270 (one sample/day for 9 months), and 

365 (one sample/day).  Note that the relative positions of the curves reflect the effects of both the "10% 

rule" criterion and the minimum-3-exceedances criterion.  For example, the curve for 𝑛=10 is more 

similar to the curve for 𝑛=30 than for 𝑛=12, but also crosses the curve for 𝑛=30. 
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Figure 4.  Probability of Type I error (listing unimpaired waters), for the test of hypotheses 𝐻0: 𝑝 ≤

0.05 𝑣𝑠. 𝐻1: 𝑝 > 0.05, for the case in which all 10 years have the same sample size (𝑛) and same population 

proportion out of compliance (𝑝), for select values of 𝑛.  Probabilities were calculated with the formulae derived in 

Appendix 1A. 

 

Figure 5.  Probability of Type II error (not listing impaired waters), for the test of hypotheses 𝐻0: 𝑝 ≤

0.05 𝑣𝑠. 𝐻1: 𝑝 > 0.05, for the case in which all 10 years have the same sample size (𝑛) and same population 

proportion out of compliance (𝑝), for select values of 𝑛.  Probabilities were calculated with the formulae derived in 

Appendix 1A. 
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Regarding assumptions 
 

The equation for the probability of listing a waterbody as impaired was derived assuming the use of 10 

years of data.  The same derivation can be used for any number of years, which would change only the 

maximum index value in the sums and products in Appendix 1A and Excel formulae (for a copy of the 

Excel spreadsheet, please send an email request to 303d@ecy.wa.gov).  

 (.  In the case of a single year of measurement, the equation for the listing probability reduces to the 

simple binomial probability of observing 3 or more exceedances. 

The probability equation derived for this technical memorandum assumes independence not only of 

years but also of individual days of measurement.  Hence, the highly likely autocorrelation between 

measurements close in time in real life is not taken into consideration.  The purpose of avoiding 

autocorrelation is to assure that the samples are independent measurements of the population.   

The treatment of sampling years as independent in order to mitigate against the effects of extraordinary 

conditions such as drought complicates the derivation of the listing probabilities.  The effects of this 

assumption of independence have not yet been studied. 

In addition, the population proportion 𝑝 is assumed to be constant within a given year (calendar or 

water), a simplifying assumption that would likely not be true, for example:  a regulated entity 

remediating a waterbody. 

 

Conclusions 

 
 A theoretical equation for the listing probability for pH, temperature, and dissolved oxygen has been 

derived.  However, calculation of such probability is practical only for the special case in which the 
sample size and population proportion out of compliance are the same for all 10 years and both 
years and samples are statistically independent. 

 

 The addition of the requirement that there be at least three exceedances to list a waterbody as 
unimpaired affects only cases in which the sample size for all years is 20 or less, and effectively only 
for sample sizes 10 or less. 

 

 In the ideal world, we would have comprehensive datasets from monitoring surveys designed 
specifically for determining compliance with water quality standards.  The reality is that we have 
data from disparate sources, collected for various reasons and by inconsistent means. This requires 
assumptions to be made before applying any statistical test to 303(d)-listing decisions, and 
considering these assumptions when evaluating the results. 

 

mailto:303d@ecy.wa.gov
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Appendix 1A 
 

Derivation of Probability of Listing based on meeting two criteria: 

a) At least two years within the past 10 years with at least 10% of samples (set of measurements 
within a calendar or water year) exceeding standards. 

b) At least three exceedances (measurements exceeding standards) over the most recent 10-year 
period. 

 

Let  

𝑛𝑖 = number of samples in year 𝑖, 𝑖 = 1, 2, … , 10 

𝑋𝑖  = number of exceedances in year 𝑖 

 

Then 

𝑃(𝑙𝑖𝑠𝑡) = 𝑃 (∑ 𝑋𝑖

10

𝑖=1

≥ 3 𝐴𝑁𝐷 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠 ≥ 10% 𝑖𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑦𝑒𝑎𝑟 ) 

= 𝑃 (∑ 𝑋𝑖

10

𝑖=1

≥ 3 𝐴𝑁𝐷 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑋𝑖 ≥ 0.1𝑛𝑖 ) 

 

= 1 −  𝑃 (∑ 𝑋𝑖

10

𝑖=1

≤ 2 𝑂𝑅 𝑛𝑜 𝑋𝑖 ≥ 0.1𝑛𝑖 ) 

 

 

= 1 −  [𝑃 (∑ 𝑋𝑖

10

𝑖=1

≤ 2) + 𝑃(𝑛𝑜 𝑋𝑖 ≥ 0.1𝑛𝑖 ) − 𝑃 (∑ 𝑋𝑖

10

𝑖=1

≤ 2 𝐴𝑁𝐷 𝑛𝑜 𝑋𝑖 ≥ 0.1𝑛𝑖 )] 

 

 

 

 

 

If the 𝑋𝑖  are distributed as Binomial(𝑛𝑖, 𝑝𝑖), then 

A B C 

A B

A BC

A B 
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𝑃(𝑋𝑖 ≤ 𝑘|𝑛𝑖, 𝑝𝑖) = ∑ (
𝑛𝑖

𝑗 )

𝑘

𝑗=0

𝑝𝑖
𝑗(1 − 𝑝𝑖)𝑛𝑖−𝑗 

= ∑ (
𝑛𝑖

𝑗 )

𝑚𝑖

𝑗=0

𝑝𝑖
𝑗(1 − 𝑝𝑖)𝑛𝑖−𝑗 + ∑ (

𝑛𝑖

𝑗 )

𝑘

𝑗=𝑚𝑖+1

𝑝𝑖
𝑗(1 − 𝑝𝑖)𝑛𝑖−𝑗 , 

where  𝑚𝑖 = 𝑓𝑙𝑜𝑜𝑟 (
𝑛𝑖−1

10
) 

 

= 𝑃(𝑋𝑖 ≤ 𝑚𝑖 𝑎𝑛𝑑 𝑋𝑖 < 0.1𝑛𝑖) + 𝑃(𝑚𝑖 < 𝑋𝑖 ≤ 𝑘 𝑎𝑛𝑑 𝑋𝑖 ≥ 0.1𝑛𝑖) 

 

= 𝑃(𝑋𝑖 ≤ 𝑚𝑖 𝑎𝑛𝑑 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠 < 10%)

+ 𝑃(𝑚𝑖 < 𝑋𝑖 ≤ 𝑘 𝑎𝑛𝑑 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠 ≥ 10%) 

 

 

𝑃(∑ 𝑋𝑖
10
𝑖=1 ≤ 2) = 𝑃(𝑠𝑜𝑚𝑒 𝑋𝑖+𝑋𝑙 ≤ 2 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑋ℎ≠𝑖,𝑙 = 0),  

for all combinations of 𝑖 and 𝑙 

 

= 𝑃(𝑠𝑜𝑚𝑒 𝑋𝑖+𝑋𝑙 = 2 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑋ℎ≠𝑖,𝑙 = 0)  

+ 𝑃(𝑠𝑜𝑚𝑒 𝑋𝑖 = 1 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑋𝑙≠𝑖 = 0) 

+ 𝑃(𝑎𝑙𝑙 𝑋𝑖 = 0), for all combinations of 𝑖 and 𝑙 

 

=  ∑ ∑ [𝑃(𝑋𝑖+𝑋𝑙 = 2) ∏ 𝑃(𝑋ℎ = 0)

ℎ≠𝑖,𝑙

]

𝑙≠𝑖

10

𝑖=1

 

                           + ∑ [𝑃(𝑋𝑖 = 1) ∏ 𝑃(𝑋𝑙 = 0)

𝑙≠𝑖

]

10

𝑖=1

+ ∏ 𝑃(𝑋𝑖 = 0)

10

𝑖=1

 

 

=  ∑ [𝑃(𝑋𝑖 = 2) ∏ 𝑃(𝑋𝑙 = 0)

𝑙≠𝑖

]

10

𝑖=1

+ ∑ ∑ [𝑃(𝑋𝑖 = 1)𝑃(𝑋𝑙 = 1) ∏ 𝑃(𝑋ℎ = 0)

ℎ≠𝑖,𝑙

]

𝑙≠𝑖

10

𝑖=1

     

+ ∑ [𝑃(𝑋𝑖 = 1) ∏ 𝑃(𝑋𝑙 = 0)

𝑙≠𝑖

]

10

𝑖=1

+ ∏ 𝑃(𝑋𝑖 = 0)

10

𝑖=1

 

 

If the 𝑋𝑖  are distributed as Binomial(𝑛𝑖, 𝑝𝑖), then 

A 

A 



Policy 1-11 Error Analysis  p. 21 December 2016 

=  ∑ [(
𝑛𝑖

2
) 𝑝𝑖

2(1 − 𝑝𝑖)𝑛𝑖−2 ∙ ∏(1 − 𝑝𝑙)𝑛𝑙

𝑙≠𝑖

]

10

𝑖=1

+ ∑ ∑ [𝑛𝑖𝑝𝑖(1 − 𝑝𝑖)𝑛𝑖−1 ∙ 𝑛𝑙𝑝𝑙(1 − 𝑝𝑙)𝑛𝑙−1 ∙ ∏(1 − 𝑝ℎ)𝑛ℎ

ℎ≠𝑖,𝑙

]

𝑙≠𝑖

10

𝑖=1

+ ∑ [𝑛𝑖𝑝𝑖(1 − 𝑝𝑖)𝑛𝑖−1 ∙ ∏(1 − 𝑝𝑙)𝑛𝑙

𝑙≠𝑖

]

10

𝑖=1

+ ∏(1 − 𝑝𝑖)𝑛𝑖

10

𝑖=1

 

 

 

 

𝑃(𝑛𝑜 𝑋𝑖 ≥ 0.1𝑛𝑖 ) = 𝑃(𝑎𝑙𝑙 𝑋𝑖 < 0.1𝑛𝑖 ) 

= ∏ 𝑃(𝑋𝑖 ≤ 𝑚𝑖)

10

𝑖=1

 , 

where 𝑚𝑖 = 𝑓𝑙𝑜𝑜𝑟 (
𝑛𝑖−1

10
) 

 

If the 𝑋𝑖  are distributed as Binomial(𝑛𝑖, 𝑝𝑖), then 

= ∏ [∑ (
𝑛𝑖

𝑗 ) 𝑝𝑖
𝑗(1 − 𝑝𝑖)𝑛𝑖−𝑗

𝑚𝑖

𝑗=0

]

10

𝑖=1

  

 

 

𝑃 (∑ 𝑋𝑖

10

𝑖=1

≤ 2 𝐴𝑁𝐷 𝑛𝑜 𝑋𝑖 ≥ 0.1𝑛𝑖) 

= 𝑃 (∑ 𝑋𝑖

10

𝑖=1

= 2 𝐴𝑁𝐷 𝑎𝑙𝑙 𝑋𝑖 < 0.1𝑛𝑖) + 𝑃 (∑ 𝑋𝑖

10

𝑖=1

= 1 𝐴𝑁𝐷 𝑎𝑙𝑙 𝑋𝑖 < 0.1𝑛𝑖) + 𝑃 (∑ 𝑋𝑖

10

𝑖=1

= 0) 

 

 

=  ∑ [𝑃(𝑋𝑖 = 2) ∏ 𝑃(𝑋𝑙 = 0)

𝑙≠𝑖

] 

10

𝑖=1

𝑓𝑜𝑟 𝑛𝑖 > 20 

        + ∑ ∑ [𝑃(𝑋𝑖 = 1)𝑃(𝑋𝑙 = 1) ∏ 𝑃(𝑋ℎ = 0)

ℎ≠𝑖,𝑙

]

𝑙≠𝑖

10

𝑖=1

𝑓𝑜𝑟 𝑛𝑖, 𝑛𝑙 > 10 

B 

C 

B 
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                + ∑ [𝑃(𝑋𝑖 = 1) ∏ 𝑃(𝑋𝑙 = 0)

𝑙≠𝑖

]

10

𝑖=1

𝑓𝑜𝑟 𝑛𝑖 > 10 

                        + ∏ 𝑃(𝑋𝑖 = 0)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑖

10

𝑖=1

 

 

If the 𝑋𝑖  are distributed as Binomial(𝑛𝑖, 𝑝𝑖), then 

=  ∑ [(
𝑛𝑖

2
) 𝑝𝑖

2(1 − 𝑝𝑖)𝑛𝑖−2 ∙ ∏(1 − 𝑝𝑙)𝑛𝑙

𝑙≠𝑖

]   𝑓𝑜𝑟 𝑛𝑖 > 20

10

𝑖=1

 

        + ∑ ∑ [𝑛𝑖𝑝𝑖(1 − 𝑝𝑖)𝑛𝑖−1 ∙ 𝑛𝑙𝑝𝑙(1 − 𝑝𝑙)𝑛𝑙−1 ∙ ∏(1 − 𝑝ℎ)𝑛ℎ

ℎ≠𝑖,𝑙

]

𝑙≠𝑖

10

𝑖=1

𝑓𝑜𝑟 𝑛𝑖, 𝑛𝑙 > 10 

                + ∑ [𝑛𝑖𝑝𝑖(1 − 𝑝𝑖)𝑛𝑖−1 ∙ ∏(1 − 𝑝𝑙)𝑛𝑙

𝑙≠𝑖

]

10

𝑖=1

𝑓𝑜𝑟 𝑛𝑖 > 10 

                        + ∏(1 − 𝑝𝑖)𝑛𝑖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑖

10

𝑖=1

 

 

 

  

C 
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APPENDIX 2 

 

Unequal Data Requirements for Category 5 and Category 1 

  

Background 
This appendix explains from a statistical perspective why the sample size required to delist a no-longer-

impaired waterbody is significantly higher than the sample size required for listing an impaired 

waterbody. 

The numbers of samples required for listing a waterbody as impaired and delisting a no-longer-impaired 

waterbody are different.  An analogy to this process would be a medical diagnosis for cancer.  It takes 

only a few tests to confirm the presence of cancer.  After going through treatments, a number of tests 

over a long period of time are needed to confirm, to a high degree of confidence, that the cancer has 

been cured.  The same applies to pollutants in the water – only a few samples are needed to confirm the 

presence; however, many more samples are needed to confirm that the pollutant no longer exists in the 

same waterbody. 

Theory 
The difference in the numbers of samples is explained by statistical theory.  What is known, once the 

sample (collection of water quality measurements) is in hand is the sample size, 𝑛, and the number of 

exceedances, 𝑥.  The quantity which is unknown, and which we wish to estimate, is the population 

proportion, 𝑝, of a waterbody which is out of compliance. 

Estimation and Confidence Intervals 
The most commonly used model for the occurrence of exceedances is a binomial probability 

distribution, which has two parameters, 𝑛 = the sample size (number of measurements) and 𝑝 = the true 

proportion of the population which is out of compliance.  We cannot know 𝑝, but we can estimate it by 

�̂� =  
𝑥

𝑛
=

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
.  Because it is a single number, �̂� is called a point estimate of 𝑝. 

We can also calculate an interval estimate of 𝑝.  So, based on the number of exceedances, 𝑥, found in 

the sample (set of measurements) of size 𝑛, we can calculate a 95% confidence interval for 𝑝, i.e., a 

range of values which has a 95% chance of covering the true, unknown value of 𝑝.1 

                                                           
1 Note that a confidence interval is not a probability statement about 𝑝, such as "𝑝 has a 95% 
probability of being within this interval."  𝑝 is fixed, but the value is unknown to us.  A 
confidence interval is a statement about the procedure for calculating an interval estimate of 𝑝 
based on the sample data.  What a 95% confidence level means is that if we repeatedly take 
samples and calculate these interval estimates for 𝑝 from the sample data, in the long run, 95% 
of the time, the interval calculated will include the true value of 𝑝.  
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Presumably, the proportion of the population which is out of compliance is small, say 10%  

(i.e., 𝑝 = 0.1), and thus we would expect the proportion of exceedances in the sample (
𝑥

𝑛
) also to be 

small.  And in fact, small values of 𝑥 are far more likely to be observed when 𝑝 is small, and large values 

of 𝑥 will be unlikely. 

Because the sample size is small relative to the population and sampling is not perfect, the observed 

number of exceedances, 𝑥, will vary from sample to sample, thus our estimate of 𝑝 (i.e., �̂�) will vary, as 

will our calculated confidence interval.  Also, the smaller the sample size is, the less reliably the sample 

reflects the true environment.  Therefore, confidence intervals are wider for smaller sample sizes than 

for larger sample sizes for the same level of confidence. 

The Link Between Confidence Intervals and Hypothesis Testing 
So if a 95% confidence interval means that we are 95% sure, based on our data, that the calculated 

interval covers the true value of 𝑝, what do values outside the confidence interval mean? 

It turns out that a 95% confidence interval is the flip side of a 5% test of hypothesis, i.e., a test of 

hypothesis with a 5% level of significance.  In hypothesis testing, we decide based on our data whether 

the evidence supports the null or the alternative hypothesis with a 5% chance of being wrong if we 

decide in favor of the alternative.  The start of the rejection region for a hypothesis test with significance 

level 5% corresponds to the end of the 95% confidence interval. 

Just as hypothesis tests can be one-sided (i.e., the alternative hypothesis specifies only one direction), so 

too can confidence intervals be one-sided.  That means that for 𝐻0: 𝑝 ≤ 0.1 vs. 𝐻1: 𝑝 > 0.1, we can use 

our data to calculate a one-sided confidence interval with lower bound, (𝑝𝐿 , 1], which we are 95% 

confident covers the true value of 𝑝.  Likewise, for 𝐻0: 𝑝 ≥ 0.1 vs. 𝐻1: 𝑝 < 0.1, we can calculate a one-

sided confidence interval with upper bound, [0, 𝑝𝑈), for which we have 95% confidence that it covers 

the true value of 𝑝. 

Thus, for example, in a test of the null hypothesis 𝐻0: 𝑝 ≤ 0.1 vs. the alternative hypothesis 𝐻1: 𝑝 > 0.1, 

if our data lead us to conclude that 𝐻1 is more likely true and to decide to reject 𝐻0, then it will also be 

true that our 95% one-sided confidence interval for  𝑝 will not include the value 0.1.2 

Putting that all together:  If we are testing 𝐻0: 𝑝 ≤ 0.1 vs. 𝐻1: 𝑝 > 0.1 at the 5% level of significance 

(such as for a listing decision), that is equivalent to calculating a 95% one-sided confidence interval 

based on our sample data (i.e., 𝑛 and 𝑥) and looking to see whether it includes the value 0.1.  If the 

lower end of the confidence interval (𝑝𝐿 , 1] is higher than 0.1, in other words, if the 95% confidence 

interval does not include 0.1, that's equivalent to saying that we have enough evidence to reject 𝐻0 in 

favor of 𝐻1. 

And if instead we are testing 𝐻0: 𝑝 ≥ 0.1 vs. 𝐻1: 𝑝 < 0.1 (such as for a delisting decision) and the upper 

end of the one-sided confidence interval [0, 𝑝𝑈) is less than 0.1 – again, if the 95% confidence interval 

does not include 0.1 – that's equivalent to saying that we have enough evidence to reject 𝐻0 and 

conclude that 𝑝 < 0.1. 

                                                           
2 Because the binomial distribution is not continuous, but has jumps in the values, there may be 
slight gaps or overlaps in the exact binomial probabilities, rejection regions, and confidence 
intervals, especially for small values of 𝑛. 
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Because the sample proportion �̂� = 𝑥
𝑛⁄  changes more rapidly with smaller 𝑛 than larger 𝑛, it takes 

fewer measurements for the lower end of a confidence interval to end up being above 0.1 than for the 

upper end of a confidence interval to end up being below 0.1.  And that is the answer to the question.  

An Excel spreadsheet was developed containing exact binomial 95% and 90% two-sided confidence 

intervals for population proportion 𝑝 (Clopper-Pearson method) calculated for all values of sample size 𝑛 

from 1 to 366 and all values of number of exceedances 𝑥 from 0 to 366, as well as the corresponding 

95% one-sided confidence intervals.  To see for yourself, look at the matrix of confidence intervals in the 

Excel spreadhseet.  (for a copy, please send an email request to 303d@ecy.wa.gov).  

For example, if the number of exceedances 𝑥 = 5, any sample size 𝑛 = 20 or smaller will result in a one-

sided 95% confidence interval whose lower end is above 0.1; i.e., we would have 95% confidence that 

the true value of 𝑝 is greater than 0.1 and would thus reject the null hypothesis 𝐻0: 𝑝 ≤ 0.1, concluding 

that the waterbody is impaired.  On the other hand, also for 𝑥 = 5, only sample sizes 𝑛 = 103 and 

greater will have a one-sided 95% confidence interval whose upper end is below 0.1, leading us to reject 

the null hypothesis 𝐻0: 𝑝 ≥ 0.1 and conclude that the waterbody is unimpaired. 

Methods 
Binomial confidence intervals for every combination of sample size from 1 to 366 (for a leap year) and 

number of exceedances from 0 to 366 were calculated.  Then the results were summarized, tabulated, 

and graphed for an illustrative example. 

Computation 
Using an Excel program available on StatPages.com (Laycock, date unknown), exact3 binomial 95% and 

90% two-sided confidence intervals were calculated for every combination of 𝑛 from 1 to 366 (for a leap 

year) and 𝑥 from 0 to 366.  The limits of symmetrical 90% two-sided confidence intervals are the same 

as limits of one-sided 95% confidence intervals. 

Evaluation 
The entire 366 x 367 matrix of confidence intervals is given in the Excel spreadsheet, for each the 95% 

and 90% confidence levels.  In addition, the spreadsheet contains the corresponding 95% one-sided 

confidence intervals.  From these matrices, you can find all combinations of sample size and number of 

exceedances which do or do not cover your hypothesized proportion of the population (waterbody) 

which is out of compliance. 

For example, the minimum combination of sample size and number of exceedances to be able to 

conclude with 95% confidence that a waterbody is impaired is if you had only two measurements and 

both of them were exceedances.  On the other hand, it would take a minimum of 29 measurements and 

0 exceedances to be able to say with 95% confidence that a waterbody is not impaired  

Note that this method does not define what is considered to be an exceedance.  Rather, it determines 

what to do once you have samples and exceedances.  Whether exceedances are to be based on grab 

samples or running averages of continuous data, daily maxima/minima, or other measures is a separate 

matter. 

                                                           
3 Clopper-Pearson method (Clopper and Pearson, 1934), not normal approximation. 

mailto:303d@ecy.wa.gov
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For the example of hypothesized 𝑝 = 0.1, Appendix 2A provides a table that lists the combinations of 𝑛 

and 𝑥 which result in one-sided 95% confidence intervals which do not cover the value 𝑝 = 0.1.  

List/delist decisions based on these confidence intervals are illustrated in Figure 1. 

 

 

Figure 1.  Sample sizes and numbers of exceedances required for listing/delisting waterbodies based on 

binomial one-sided 95% confidence intervals, assuming 𝑝0 = 0.1. 

 

Conclusions 
The reason that a larger sample size is required to delist a no-longer-impaired waterbody than to list an 

impaired waterbody is a function of the hypotheses being tested, the statistical distribution type 

assumed for the population, and the statistical significance level used, as well as the mathematical 

characteristics of a ratio. 
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Appendix 2A 
 
Table of minimum and maximum sample size and number of exceedances such that 95% exact binomial one-sided confidence intervals4 for 
the population proportion do not include 0.1. 
 

Minimum number of 
exceedances for 95% 

confidence that 𝑝 > 0.1, 
based on sample size 

Maximum sample size for 95% 
confidence that 𝑝 > 0.1, based 

on number of exceedances 

 

Maximum number of 
exceedances for 95% 

confidence that 𝑝 < 0.1, 
based on sample size 

Minimum sample size for 95% 
confidence that 𝑝 < 0.1, based on 

number of exceedances 

Sample 

Size, 𝑛 

Minimum # 
exceedances 

Number of 
exceedances, 𝑘 

Maximum 
sample size 

 Sample 

Size, 𝑛 

Maximum # 
exceedances 

Number of 

exceedances, 𝑚 

Minimum 
sample size 

1 not possible 0 or 1 not possible  1-28 not possible 0 29 

2-3 2 2 3  29-45 0 1 46 

4-8 3 3 8  46-60 1 2 61 

9-14 4 4 14  61-75 2 3 76 

15-20 5 5 20  76-88 3 4 89 

21-27 6 6 27  89-102 4 5 103 

28-34 7 7 34  103-115 5 6 116 

35-41 8 8 41  116-128 6 7 129 

42-48 9 9 48  129-141 7 8 142 

49-56 10 10 56  142-153 8 9 154 

57-63 11 11 63  154-166 9 10 167 

64-71 12 12 71  167-178 10 11 179 

72-79 13 13 79  179-190 11 12 191 

80-87 14 14 87  191-202 12 13 203 

88-94 15 15 94  203-214 13 14 215 

95-102 16 16 102  215-226 14 15 227 

103-110 17 17 110  227-238 15 16 239 

                                                           
4 Clopper-Pearson binomial confidence intervals (Clopper and Pearson, 1934).  Computed with Excel calculator programmed by Laycock 

(date unknown). 
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Minimum number of 
exceedances for 95% 

confidence that 𝑝 > 0.1, 
based on sample size 

Maximum sample size for 95% 
confidence that 𝑝 > 0.1, based 

on number of exceedances 

 

Maximum number of 
exceedances for 95% 

confidence that 𝑝 < 0.1, 
based on sample size 

Minimum sample size for 95% 
confidence that 𝑝 < 0.1, based on 

number of exceedances 

Sample 

Size, 𝑛 

Minimum # 
exceedances 

Number of 
exceedances, 𝑘 

Maximum 
sample size 

 Sample 

Size, 𝑛 

Maximum # 
exceedances 

Number of 

exceedances, 𝑚 

Minimum 
sample size 

111-119 18 18 119  239-250 16 17 251 

120-127 19 19 127  251-262 17 18 263 

128-135 20 20 135  263-274 18 19 275 

136-143 21 21 143  275-285 19 20 286 

144-152 22 22 152  286-297 20 21 298 

153-160 23 23 160  298-309 21 22 310 

161-168 24 24 168  310-320 22 23 321 

169-177 25 25 177  321-332 23 24 333 

178-185 26 26 185  333-344 24 25 345 

186-194 27 27 194  345-355 25 26 356 

195-202 28 28 202  356-366 26 27 or more not possible 

203-211 29 29 211      

212-219 30 30 219      

220-228 31 31 228      

229-236 32 32 236      

237-245 33 33 245      

246-254 34 34 254      

255-262 35 35 262      

263-271 36 36 271      

272-280 37 37 280      

281-289 38 38 289      

290-297 39 39 297      

298-306 40 40 306      

307-315 41 41 315      

316-324 42 42 324      

325-332 43 43 332      

333-341 44 44 341      

342-350 45 45 350      
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Minimum number of 
exceedances for 95% 

confidence that 𝑝 > 0.1, 
based on sample size 

Maximum sample size for 95% 
confidence that 𝑝 > 0.1, based 

on number of exceedances 

 

Maximum number of 
exceedances for 95% 

confidence that 𝑝 < 0.1, 
based on sample size 

Minimum sample size for 95% 
confidence that 𝑝 < 0.1, based on 

number of exceedances 

Sample 

Size, 𝑛 

Minimum # 
exceedances 

Number of 
exceedances, 𝑘 

Maximum 
sample size 

 Sample 

Size, 𝑛 

Maximum # 
exceedances 

Number of 

exceedances, 𝑚 

Minimum 
sample size 

351-359 46 46 359      

360-366 47 47 or more 
all sample 

sizes 
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Appendix 3 

 

Use of instantaneous Measurements to represent  

Multi-day Averages (such as chronic metals) 
  

Background 
This analysis explores how representative a single "grab" sample is of multi-day averages of toxics 
contamination.   The frequency and type of water quality data to be used for Water Quality Assessments 
are unknown until the data are received by Ecology.  Therefore, Ecology is sometimes in the position of 
having to make 303(d)-listing decisions with limited data.  The analysis documented in this paper 
addresses only a single aspect of the complex situation of 303(d)-listing criteria and the data available, 
specifically, whether single samples can be used to evaluate toxics contamination for which the criteria 
are based on 4-day running averages. 
 

Methods 
The general approach involved simulating hypothetical “observed” contaminant concentrations that 

corresponded to a waterbody just meeting the chronic water quality standard and determining how 

often the standard was not met.  The basis for the simulation was EPA technical guidance on derivation 

of acute and chronic water quality standards for toxic contaminants (EPA, 1991). 

Large numbers of random values were generated from a probability distribution defined by the long-

term average set at the chronic water quality standard for a given contaminant to represent single 

"grab" samples.  Running averages of four single values for the entire sequence were calculated to 

represent "4-day running average" concentrations.  The reason for using averages set at the standards is 

to simulate the worst-case scenario for waterbodies actually in compliance. 

Both the individual "1-day" values and the "4-day average" values were compared to the chronic water 

quality standard for that particular contaminant, and the percent of the single and averaged values 

exceeding the standard was calculated.  Such a simulation was repeated for many different toxic 

contaminant standards. 

Finally, the exceedance rates (percent exceedance) of the "1-day" and "4-day average" observations for 

the collection of all the contaminants simulated were statistically compared. 

Simulation 

Two Excel spreadsheets were used for this analysis: 

 wqbp3.xls calculates acute and chronic Wasteload Allocations (WLAs) and Long-Term Averages 
(LTA), and Daily Maximum Permit Limit (MDL) and Monthly Average Permit Limit (AML), using 
formulae given in EPA (1991) Section 5.4.  The WLAs are calculated from the acute and chronic 
water quality standards, assuming no (0) upstream receiving water concentration and effluent 
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dilution factor of 1.5  The acute and chronic LTAs are calculated from the WLAs; the 90th, 95th, or 99th 
percentile of a standard lognormal distribution; and the shape parameter of a lognormal distribution 
calculated from assumed coefficient of variation6 (cv) of 0.6.  The AML and MDL are based on 95th 
and 99th percentiles, respectively, of a standard lognormal distribution, the more limiting of the 
LTAs, and the same assumed shape parameter. 

 

 wqpb_303d_example_distributions.xlsx does three things:  (1) generates random "daily 
observations" from lognormal distributions representing chronic and acute conditions;  
(2) calculates running "4-day" averages of the "chronic" observations, and (3) determines the 
proportions of individual and averaged observations which exceed the respective water quality 
standards.  The random lognormally-distributed numbers are generated by an Excel add-in called 
YASAIw.xla using as location and shape parameters the LTA and shape parameter computed by 
wqbp3.xls.  The number of random observations generated were extended from 1000 to 10,000. 

 

Using these two spreadsheets, 10,000 single "1-day" (or "1-hour") observations and 10,000 "4-day 

running averages" for chronic contamination were simulated, for each of the toxics parameters with 

constant numerical Toxics Substances Criteria (TSCs) (Table 1), i.e., criteria not dependent on specific 

values of pH, temperature, or hardness (Ecology, 2011).  The spreadsheet also generated 10,000 single 

observations for comparison to the acute TSCs, but since it did not also calculate running averages, the 

results were not used further.  The simulations were repeated for LTAs based on each the 90th, 95th, and 

99th percentiles of the standard lognormal distribution. 

Comparison 

To estimate the frequency at which the single measurements exceed the chronic standards, compared 

to that of the 4-day running averages, the ratio of the exceedance rates (percent exceedance) of the "1-

day" and "4-day average" observations for each of the contaminants were calculated and percentile-

defined lognormal distributions simulated. 

Table 1.  Toxics Substances Criteria (Ecology, 2011) for which Monte Carlo simulations were performed.  

In all cases except the few noted, the chronic criterion was the limiting condition, meaning the more 

stringent standard for the particular lognormal distribution Long-Term Average.  The acute TSC was the 

limiting condition only for:  * = LTA based on 99th percentile; *** = LTA based on 90th, 95th, and 99th 

percentiles.  Simulations for only the chronic criteria were used in the comparison analysis. 

Parameter 
Freshwater  

TSC Acute 

Freshwater  

TSC Chronic 

Marine 

Water TSC 

Acute 

Marine Water 

TSC Chronic 

Aldrin/Dieldrin (Dieldrin/Aldrin) 2.5 0.0019 0.71 0.0019 

Ammonia (un-ionized NH3)   0.233 0.035 

Arsenic 360 190 69 36 

                                                           
5 With upstream receiving water concentration = 0 and dilution factor = 1, the WLA is therefore 
calculated to be equal to the water quality standard. 
6 The coefficient of variation is the ratio of the standard deviation to the mean. 
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Parameter 
Freshwater  

TSC Acute 

Freshwater  

TSC Chronic 

Marine 

Water TSC 

Acute 

Marine Water 

TSC Chronic 

Cadmium   42 9.3 

Chlordane 2.4 0.0043 0.09 0.004 

Chloride (Dissolved) 860 230   

Chlorine (Total Residual) 19 11 13 7.5 

Chlorpyrifos 0.083 0.041 0.011 0.0056 

Chromium (Hex) 15 10 1100 50 

Copper   4.8* 3.1 

Cyanide Pt Roberts to Pt Wilson 
22 5.2 

9.1 2.8 

Cyanide elsewhere 1*** 1 

DDT (and metabolites) 1.1 0.001 0.13 0.001 

Endosulfan 0.22 0.056 0.034 0.0087 

Endrin 0.18 0.0023 0.037 0.0023 

Heptachlor 0.52 0.0038 0.053 0.0036 

Hexachlorocyclohexane (Lindane) 2 0.08 0.16  

Lead   210 8.1 

Mercury 2.1 0.012 1.8 0.025 

Nickel   74 8.2 

Parathion 0.065 0.013   

Pentachlorophenol (PCP)   13 7.9 

Polychlorinated Biphenyls (PCBs) 2 0.014 10 0.03 

Selenium 20 5 290 71 

Silver   1.9  

Toxaphene 0.73 0.0002 0.21 0.0002 

Zinc   90*** 81 
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Evaluation 
As expected, the output simulated the input with some degree of variability (Appendix 3A Tables 3A1-

3A3).  The output cv for the single measurements was close to 0.6 (Appendix 3A Figure 3A1).  The output 

cv for the "4-day averages" was close to 0.3 (not shown), as to be expected because the standard 

deviation of collections of averages of 4 numbers is algebraically ½ the standard deviation of collections 

of single values. 

The TSC-exceedance proportions for the "4-day averages" compared to the chronic criteria and for "1-

day" observations compared to acute criteria were close to 90%, 95%, and 99%, accordingly for the 

bases of the input LTAs (Appendix 3A Table 3A4, Figure 3A2). 

The output exceedance proportions for the "1-day" chronic simulations, however, were on average 1.96, 

2.82, and 7.11 times the "4-day average" chronic exceedance proportions for the 90%, 95%, and 99% 

LTAs, respectively (Table 2, Figures 1-2, Appendix 3A Table 3A4).  In other words, individual daily 

observations have a much greater chance of exceeding the chronic TSC than 4-day averages do.  And 

the more extreme the percentile on which the Long-Term Average is based, the more extreme the 

exceedance rate for the single measurements.  The latter is because of the greater variability in the 

upper tail of a right-skewed distribution such as the lognormal. 

Table 2.  Summary statistics for ratios of "1-day" to "4-day average" exceedance rates (percent of 

observations exceeding chronic TSCs) for each toxics parameter.  Results are based on 10,000 randomly 

generated concentrations from lognormal distributions defined by Long-Term Averages based on 90th, 

95th, and 99th percentiles, for each parameter. 

 

LTA based on: N Mean StDev Minimum Q1 Median Q3 Maximum 

90th Percentile 41 1.96 0.11 1.72 1.87 1.95 2.05 2.21 

95th Percentile 41 2.82 0.14 2.52 2.74 2.83 2.91 3.24 

99th Percentile 41 7.11 0.75 5.19 6.65 7.02 7.54 8.91 
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Figure 1.  Exceedance rates (percent of observations exceeding chronic TSCs) of "1-day" and "4-day 

average" simulated observations for each toxics parameter.  Results are based on 10,000 randomly 

generated concentrations from lognormal distributions defined by Long-Term Averages based on 90th, 

95th, and 99th percentiles, for each parameter.  Means are indicated by red diamonds. 

 

 

Figure 2.  Ratios of "1-day" to "4-day average" exceedance rates (percent of observations exceeding 

chronic TSCs) for each toxics parameter.  Results are based on 10,000 randomly generated 

concentrations from lognormal distributions defined by Long-Term Averages based on 90th, 95th, and 

99th percentiles, for each parameter.  Means are indicated by red diamonds. 
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Caveats and Discussion 

 

 The underlying assumptions of lognormality and coefficient of variation value have not been tested 
with real data; therefore, these results are provisional. 

 

 Although the individual observations were generated from the same lognormal distribution for a 
given parameter and percentile-based LTA, the fact that they were randomly generated means (if 
the underlying random-number generator in YASAIw.xla is sound) that the observations are 
independent, meaning that serial observations would be uncorrelated.  In real life, however, serial 
observations would likely be temporally autocorrelated; in other words, observations taken close in 
time would likely be more similar to each other than if they were truly random. 
 

Therefore, if a waterbody is in compliance, with contaminant concentration truly below the relevant 

standard, it would be more likely for serial observations to reflect that.  Similarly, if the true average 

concentration is higher than the standard, it would be more likely for serial individual 

measurements to exceed the criteria. 

Ideally, all measurements would be independent and truly random.  Autocorrelation results from 

taking samples too close together in space or time for the samples to be independent.  

Autocorrelation is a function of sampling, not of the underlying population.  Therefore, the results of 

these simulations represent an idealized situation. 

Furthermore, the situations in which single samples would be used would most likely be cases in 

which the samples are taken so far apart in time as to be uncorrelated.  If daily samples are 

autocorrelated, the variability of the resulting 4-day averages would be artificially depressed, 

making the difference in exceedance rates potentially even greater. 

 All of the random observations generated in a given run were based on fixed distributional location 
and shape.  Such constancy, however, would not be true if the underlying true distribution were 
changing, such as when a regulated entity is actively remediating a waterbody or when some new 
source of contamination begins (e.g., oil train derailment). 

 

 There is a circularity to the simulation, in that the particular lognormal distribution is based on the 
WLA (formula in EPA, 1991, Section 5.4), which is equal to the input water quality standards, and 
then the results are compared to the same standards. 

 

 This simulation did not take into consideration how the TSCs were established in the first place, and 
so the lognormal distribution used in the simulation may not be the same distribution used to 
develop the standards. 
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Conclusions 
 

 Individual daily observations have a much greater chance of exceeding the chronic TSC than 4-day 
averages do.  The exceedance rate is a function of the assumed lognormal percentile on which the 
LTA is based.  On average: 

o For LTAs based on 90th percentiles, 1-day observations are twice as likely to exceed the 
chronic standards as are the 4-day running averages. 

o For LTAs based on 95th percentiles, the 1-day exceedance rate is almost three times that of 
4-day running averages. 

o For LTAs based on 99th percentiles, 1-day observations are more than seven times as likely 
as the 4-day running averages to exceed the chronic standards. 

 

 These results are based on a constant distributional model excluding autocorrelation.  Real-world 
exceedance rates of single observations may differ due to autocorrelation and changing conditions. 
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Appendix 3A 

 

Table 3A1.  Comparison of input Long-Term Averages based on 90th percentile of lognormal distribution 

(calculated per EPA, 1997) and output sample means of 10,000 randomly generated values 

Fresh-water / 

Marine 

Water 

Parameter 

For LTA based on 90th percentile 

Acute criteria Chronic criteria 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

FW Aldrin/Dieldrin 1.4324 1.4241 0.8488 0.0014 0.0014 0.0008 

MW Aldrin/Dieldrin 0.4068 0.4090 0.2461 0.0014 0.0014 0.0009 

MW Ammonia (un-ionized NH3) 0.1335 0.1333 0.0795 0.0251 0.0250 0.0154 

MW Arsenic 39.5349 39.6086 24.2074 25.8002 25.8683 15.5805 

MW Cadmium 24.0647 24.1739 14.7580 6.6650 6.7114 4.1056 

FW Chlordane 1.3751 1.3763 0.8199 0.0031 0.0031 0.0019 

MW Chlordane 0.0516 0.0512 0.0306 0.0029 0.0029 0.0017 

FW Chloride (Dissolved) 492.7544 494.1810 304.8315 164.8344 164.2523 97.2711 

FW Chloride (Total Residual) 10.8864 10.8994 6.5869 7.8834 7.8509 4.6440 

MW Chloride (Total Residual) 7.4486 7.4265 4.4056 5.3750 5.3561 3.1625 

FW Chlorpyrifos 0.0476 0.0473 0.0284 0.0294 0.0293 0.0175 

MW Chlorpyrifos 0.0063 0.0063 0.0037 0.0040 0.0041 0.0025 

FW Chromium (Hex) 8.5946 8.6749 5.3935 7.1667 7.1628 4.1332 

MW Chromium (Hex) 630.2672 633.5648 377.6326 35.8336 35.5917 21.1570 

MW Copper 2.7503 2.7671 1.7056 2.2217 2.2005 1.2987 

FW Cyanide 12.6053 12.5019 7.4811 3.7267 3.6979 2.1889 

MW Cyanide elsewhere 0.5730 0.5701 0.3418 0.7167 0.7170 0.4269 

MW Cyanide Pt Roberts to Pt Wilson 5.2140 5.1962 3.1282 2.0067 2.0190 1.2185 

FW DDT (and metabolites) 0.6303 0.6273 0.3766 0.0007 0.0007 0.0004 

MW DDT (and metabolites) 0.0745 0.0757 0.0451 0.0007 0.0007 0.0004 

FW Endosulfan 0.1261 0.1259 0.0744 0.0401 0.0396 0.0235 
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Fresh-water / 

Marine 

Water 

Parameter 

For LTA based on 90th percentile 

Acute criteria Chronic criteria 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

MW Endosulfan 0.0195 0.0757 0.0451 0.0062 0.0007 0.0004 

FW Endrin 0.1031 0.1027 0.0617 0.0016 0.0016 0.0010 

MW Endrin 0.0212 0.0212 0.0129 0.0016 0.0017 0.0010 

FW Heptachlor 0.2979 0.2985 0.1786 0.0027 0.0027 0.0017 

MW Heptachlor 0.0304 0.0303 0.0183 0.0026 0.0026 0.0016 

FW Hexachlorocyclohexane (Lindane) 1.1459 1.1426 0.6779 0.0573 0.0563 0.0330 

MW Hexachlorocyclohexane (Lindane) 0.0917 0.0907 0.0536 NA NA NA 

MW Lead 120.3237 120.2093 71.3299 5.8050 5.7956 3.5248 

FW Mercury 1.2032 1.2039 0.7135 0.0086 0.0087 0.0052 

MW Mercury 1.0313 1.0351 0.6163 0.0179 0.0179 0.0108 

MW Nickel 42.3998 42.4911 25.7408 5.8767 5.8964 3.6226 

FW Parathion 0.0372 0.0375 0.0226 0.0093 0.0093 0.0055 

MW Pentachlorophenol (PCP) 7.4486 7.3987 4.4269 5.6617 5.6197 3.3495 

FW Polychlorinated Biphenyls (PCBs) 1.1459 1.1437 0.6768 0.0100 0.0100 0.0061 

MW Polychlorinated Biphenyls (PCBs) 5.7297 5.7565 3.4458 0.0215 0.0216 0.0126 

FW Selenium 11.4594 11.4796 6.9348 3.5834 3.5567 2.1468 

MW Selenium 166.1614 165.4830 102.2240 50.8837 50.6941 29.9958 

FW Silver 206.2693 206.1154 123.3480 136.1675 135.6015 80.0611 

MW Silver 1.0886 1.0957 0.6493 NA NA NA 

FW Toxaphene 0.4183 0.4228 0.2594 0.0001 0.0001 0.0001 

MW Toxaphene 0.1203 0.1208 0.0714 0.0001 0.0001 0.0001 

MW Zinc 51.5673 52.0253 30.3796 58.0504 57.6771 34.8144 
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Table 3A2.  Comparison of input Long-Term Averages based on 95th percentile of lognormal distribution 

(calculated per EPA, 1997) and output sample means of 10,000 randomly generated values. 

Fresh-water / 

Marine Water 
Parameter 

For LTA based on 95th percentile 

Acute criteria Chronic criteria 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

FW Aldrin/Dieldrin 1.1710 1.1722 0.7083 0.0012 0.0012 0.0007 

MW Aldrin/Dieldrin 0.3326 0.3306 0.1995 0.0012 0.0012 0.0007 

MW Ammonia (un-ionized NH3) 0.1091 0.1091 0.0658 0.0225 0.0225 0.0135 

MW Arsenic 32.3196 32.4619 19.2610 23.1895 23.1518 13.6824 

MW Cadmium 19.6728 19.7910 11.9516 5.9906 5.9910 3.5698 

FW Chlordane 1.1242 1.1298 0.6751 0.0028 0.0028 0.0017 

MW Chlordane 0.0422 0.0422 0.0251 0.0026 0.0026 0.0016 

FW Chloride (Dissolved) 402.8244 399.9348 235.6043 148.1553 147.2930 85.6583 

FW Chloride (Total Residual) 8.8996 8.8549 5.3655 7.0857 7.0897 4.2629 

MW Chloride (Total Residual) 6.0892 6.0547 3.6550 4.8312 4.8648 2.9257 

FW Chlorpyrifos 0.0389 0.0387 0.0230 0.0264 0.0266 0.0159 

MW Chlorpyrifos 0.0052 0.0051 0.0031 0.0036 0.0036 0.0022 

FW Chromium (Hex) 7.0260 7.0291 4.2147 6.4415 6.4741 3.9466 

MW Chromium (Hex) 515.2405 517.9707 311.3287 32.2077 32.3522 19.5016 

MW Copper 2.2483 2.2343 1.3675 1.9969 1.9777 1.1653 

FW Cyanide 10.3048 10.3143 6.0867 3.3496 3.3486 2.0324 

MW Cyanide elsewhere 0.4684 0.4664 0.2773 0.6442 0.6508 0.3970 

MW Cyanide Pt Roberts to Pt Wilson 4.2624 4.2830 2.5609 1.8036 1.7794 1.0482 

FW DDT (and metabolites) 0.5152 0.5176 0.3109 0.0006 0.0006 0.0004 

MW DDT (and metabolites) 0.0609 0.0607 0.0370 0.0006 0.0006 0.0004 

FW Endosulfan 0.1030 0.1028 0.0618 0.0361 0.0360 0.0215 

MW Endosulfan 0.0159 0.0607 0.0370 0.0056 0.0006 0.0004 

FW Endrin 0.0843 0.0840 0.0484 0.0015 0.0015 0.0009 

MW Endrin 0.0173 0.0173 0.0105 0.0015 0.0015 0.0009 
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Fresh-water / 

Marine Water 
Parameter 

For LTA based on 95th percentile 

Acute criteria Chronic criteria 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

FW Heptachlor 0.2436 0.2445 0.1467 0.0024 0.0024 0.0014 

MW Heptachlor 0.0248 0.0250 0.0151 0.0023 0.0023 0.0014 

FW Hexachlorocyclohexane (Lindane) 0.9368 0.9330 0.5495 0.0515 0.0514 0.0307 

MW Hexachlorocyclohexane (Lindane) 0.0749 0.0743 0.0438 NA NA NA 

MW Lead 98.3641 98.3316 58.7006 5.2176 5.2064 3.0683 

FW Mercury 0.9836 0.9853 0.5947 0.0077 0.0078 0.0047 

MW Mercury 0.8431 0.8441 0.4895 0.0161 0.0162 0.0098 

MW Nickel 34.6616 34.6592 21.0313 5.2821 5.2749 3.1781 

FW Parathion 0.0304 0.0301 0.0180 0.0084 0.0085 0.0052 

MW Pentachlorophenol (PCP) 6.0892 6.0726 3.6020 5.0888 5.1076 3.0509 

FW Polychlorinated Biphenyls (PCBs) 0.9368 0.9456 0.5776 0.0090 0.0090 0.0055 

MW Polychlorinated Biphenyls (PCBs) 4.6840 4.6603 2.7898 0.0193 0.0193 0.0116 

FW Selenium 9.3680 9.3087 5.5775 3.2208 3.2186 1.9436 

MW Selenium 135.8361 135.3794 80.4981 45.7349 45.5678 27.0581 

FW Silver 168.6242 168.1632 102.2786 122.3892 121.9166 72.1004 

MW Silver 0.8900 0.8874 0.5299 NA NA NA 

FW Toxaphene 0.3419 0.3438 0.2019 0.0001 0.0001 0.0001 

MW Toxaphene 0.0984 0.0987 0.0584 0.0001 0.0001 0.0001 

MW Zinc 42.1560 42.5834 26.0208 52.1764 52.5913 31.4419 
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Table 3A3.  Comparison of input Long-Term Averages based on 99th percentile of lognormal distribution 

(calculated per EPA, 1997) and output sample means of 10,000 randomly generated values. 

Fresh-water 

/ Marine 

Water 

Parameter 

For LTA based on 99th percentile 

Acute criteria Chronic criteria 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

FW Aldrin/Dieldrin 0.8027 0.8022 0.4822 0.0010 0.0010 0.0006 

MW Aldrin/Dieldrin 0.2280 0.2281 0.1383 0.0010 0.0010 0.0006 

MW Ammonia (un-ionized NH3) 0.0748 0.0749 0.0445 0.0185 0.0185 0.0109 

MW Arsenic 22.1547 22.1947 13.2177 18.9876 18.9623 11.3729 

MW Cadmium 13.4855 13.4978 7.9594 4.9051 4.8762 2.9091 

FW Chlordane 0.7706 0.7754 0.4647 0.0023 0.0023 0.0014 

MW Chlordane 0.0289 0.0290 0.0177 0.0021 0.0021 0.0013 

FW Chloride (Dissolved) 276.1316 274.8881 166.9309 121.3097 120.4512 72.1695 

FW Chloride (Total Residual) 6.1006 6.0839 3.7498 5.8018 5.7494 3.4282 

MW Chloride (Total Residual) 4.1741 4.1892 2.4846 3.9558 3.9728 2.4024 

FW Chlorpyrifos 0.0266 0.0269 0.0163 0.0216 0.0218 0.0131 

MW Chlorpyrifos 0.0035 0.0035 0.0021 0.0030 0.0030 0.0018 

FW Chromium (Hex) 4.8162 4.8198 2.8984 5.2743 5.2799 3.3069 

MW Chromium (Hex) 353.1915 349.4278 205.2844 26.3717 26.3852 15.6677 

MW Copper 1.5412 1.5265 0.9125 1.6350 1.6243 0.9570 

FW Cyanide 7.0638 7.0698 4.1830 2.7427 2.7370 1.6408 

MW Cyanide elsewhere 0.3211 0.3210 0.1937 0.5274 0.5240 0.3199 

MW Cyanide Pt Roberts to Pt Wilson 2.9219 2.8903 1.7135 1.4768 1.4848 0.8969 

FW DDT (and metabolites) 0.3532 0.3518 0.2097 0.0005 0.0005 0.0003 

MW DDT (and metabolites) 0.0417 0.0415 0.0249 0.0005 0.0005 0.0003 

FW Endosulfan 0.0706 0.0706 0.0419 0.0295 0.0294 0.0177 

MW Endosulfan 0.0109 0.0415 0.0249 0.0046 0.0005 0.0003 

FW Endrin 0.0578 0.0579 0.0349 0.0012 0.0012 0.0007 

MW Endrin 0.0119 0.0119 0.0073 0.0012 0.0012 0.0007 
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Fresh-water 

/ Marine 

Water 

Parameter 

For LTA based on 99th percentile 

Acute criteria Chronic criteria 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

Input 

LTA 

Sample 

Mean 

Sample 

StDev 

FW Heptachlor 0.1670 0.1681 0.1005 0.0020 0.0020 0.0012 

MW Heptachlor 0.0170 0.0168 0.0100 0.0019 0.0019 0.0011 

FW Hexachlorocyclohexane (Lindane) 0.6422 0.6391 0.3800 0.0422 0.0421 0.0250 

MW Hexachlorocyclohexane (Lindane) 0.0514 0.0517 0.0319 NA NA NA 

MW Lead 67.4275 67.7079 41.2900 4.2722 4.3171 2.6020 

FW Mercury 0.6743 0.6696 0.3904 0.0063 0.0063 0.0038 

MW Mercury 0.5779 0.5819 0.3561 0.0132 0.0133 0.0080 

MW Nickel 23.7602 23.8078 14.4897 4.3250 4.2987 2.5777 

FW Parathion 0.0209 0.0209 0.0126 0.0069 0.0069 0.0041 

MW Pentachlorophenol (PCP) 4.1741 4.1309 2.4668 4.1667 4.1526 2.4910 

FW Polychlorinated Biphenyls (PCBs) 0.6422 0.6437 0.3844 0.0074 0.0074 0.0044 

MW Polychlorinated Biphenyls (PCBs) 3.2108 3.1957 1.9003 0.0158 0.0158 0.0096 

FW Selenium 6.4217 6.4374 3.8362 2.6372 2.6398 1.5653 

MW Selenium 93.1141 93.1165 55.0964 37.4478 37.2742 21.9396 

FW Silver 115.5900 115.4887 68.6670 100.2124 100.2502 59.4642 

MW Silver 0.6101 0.6144 0.3758 NA NA NA 

FW Toxaphene 0.2344 0.2343 0.1368 0.0001 0.0001 0.0001 

MW Toxaphene 0.0674 0.0677 0.0399 0.0001 0.0001 0.0001 

MW Zinc 28.8975 28.6322 17.5779 42.7221 42.5279 24.9355 
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Table 3A4.  Exceedance rates (percent of observations exceeding standards) of single "1-day" observations and running "4-day" averages above 

chronic TSCs, and ratios of the "1-day" to "4-day average" exceedance rates.  Results are based on 10,000 randomly generated concentrations 

from lognormal distributions defined by Long-Term Averages based on 90th, 95th, and 99th percentiles, for each parameter. 

Freshwater

/Marine 

Water 

Parameter 

90th Percentile 95th Percentile 99th Percentile 

% Exceedance Ratio 

1-day / 

4-day 

% Exceedance Ratio 

1-day / 

4-day 

% Exceedance Ratio 

1-day / 

4-day 1-day 4-day avg 1-day 4-day avg 1-day 4-day avg 

FW Aldrin/Dieldrin (Dieldrin/Aldrin) 18.84 10.01 1.88 14.45 5.00 2.89 6.89 1.12 6.15 

MW Aldrin/Dieldrin (Dieldrin/Aldrin) 19.46 10.85 1.79 14.17 4.86 2.92 7.83 1.22 6.42 

MW Ammonia (un-ionized NH3) 18.85 10.13 1.86 14.41 5.23 2.76 7.81 1.12 6.97 

FW Arsenic 18.74 9.42 1.99 14.12 5.27 2.68 7.52 1.03 7.30 

MW Arsenic 19.14 10.09 1.90 14.29 4.88 2.93 7.83 1.03 7.60 

MW Cadmium 19.19 11.18 1.72 14.37 4.89 2.94 7.24 0.99 7.31 

FW Chlordane 19.56 10.46 1.87 14.89 5.39 2.76 7.66 1.30 5.89 

MW Chlordane 18.64 9.29 2.01 14.47 5.34 2.71 7.56 1.13 6.69 

FW Chloride (Dissolved) 18.85 9.28 2.03 14.09 4.98 2.83 7.42 1.04 7.13 

FW Chlorine (Total Residual) 18.79 8.79 2.14 14.73 5.03 2.93 7.34 0.99 7.41 

MW Chlorine (Total Residual) 18.69 9.03 2.07 14.39 5.72 2.52 7.78 1.32 5.89 

FW Chlorpyrifos 19.26 9.35 2.06 14.58 5.04 2.89 7.78 1.21 6.43 

MW Chlorpyrifos 19.41 11.08 1.75 14.34 4.99 2.87 7.66 1.12 6.84 

FW Chromium (Hex) 19.14 9.33 2.05 14.29 5.42 2.64 7.83 1.51 5.19 

MW Chromium (Hex) 18.69 9.28 2.01 14.29 5.22 2.74 7.43 1.10 6.75 
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Freshwater

/Marine 

Water 

Parameter 

90th Percentile 95th Percentile 99th Percentile 

% Exceedance Ratio 

1-day / 

4-day 

% Exceedance Ratio 

1-day / 

4-day 

% Exceedance Ratio 

1-day / 

4-day 1-day 4-day avg 1-day 4-day avg 1-day 4-day avg 

MW Copper 18.55 8.38 2.21 13.56 4.19 3.24 7.18 0.99 7.25 

FW Cyanide 18.68 8.99 2.08 14.17 5.03 2.82 7.60 1.14 6.67 

MW Cyanide Pt Roberts to Pt Wilson 19.25 10.29 1.87 13.34 4.66 2.86 7.78 1.03 7.55 

MW Cyanide elsewhere 18.58 9.77 1.90 14.76 5.39 2.74 7.41 1.06 6.99 

FW DDT (and metabolites) 18.99 9.58 1.98 14.64 5.12 2.86 7.73 1.12 6.90 

MW DDT (and metabolites) 18.74 9.13 2.05 14.06 4.87 2.89 7.58 1.16 6.53 

FW Endosulfan 18.10 9.09 1.99 14.23 5.03 2.83 7.45 1.09 6.83 

MW Endosulfan 18.74 9.13 2.05 14.06 4.87 2.89 7.58 1.16 6.53 

FW Endrin 18.95 9.40 2.02 13.79 5.21 2.65 7.79 1.00 7.79 

MW Endrin 19.31 10.26 1.88 14.58 4.95 2.95 7.43 1.12 6.63 

FW Heptachlor 19.47 10.12 1.92 13.83 4.64 2.98 7.55 1.07 7.06 

MW Heptachlor 19.55 10.22 1.91 14.20 5.07 2.80 7.18 0.99 7.25 

FW Hexachlorocyclohexane (Lindane) 17.81 8.29 2.15 14.13 5.26 2.69 7.52 1.00 7.52 

MW Lead 18.55 9.96 1.86 14.07 4.64 3.03 7.82 0.93 8.41 

FW Mercury 18.88 10.21 1.85 14.99 5.20 2.88 7.69 1.11 6.93 

MW Mercury 18.81 9.97 1.89 14.29 5.57 2.57 8.00 1.14 7.02 

MW Nickel 18.97 10.17 1.87 14.15 5.42 2.61 7.42 0.96 7.73 

FW Parathion 18.82 9.65 1.95 14.52 5.69 2.55 7.52 1.04 7.23 

MW Pentachlorophenol (PCP) 18.40 9.66 1.90 14.82 5.09 2.91 7.69 0.88 8.74 
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Freshwater

/Marine 

Water 

Parameter 

90th Percentile 95th Percentile 99th Percentile 

% Exceedance Ratio 

1-day / 

4-day 

% Exceedance Ratio 

1-day / 

4-day 

% Exceedance Ratio 

1-day / 

4-day 1-day 4-day avg 1-day 4-day avg 1-day 4-day avg 

FW Polychlorinated Biphenyls (PCBs) 18.55 10.30 1.80 14.85 5.21 2.85 7.53 0.94 8.01 

MW Polychlorinated Biphenyls (PCBs) 19.55 9.53 2.05 13.69 4.85 2.82 7.37 1.11 6.64 

FW Selenium 18.70 9.20 2.03 14.17 5.13 2.76 7.48 0.84 8.90 

MW Selenium 19.43 9.41 2.06 13.72 4.63 2.96 7.62 0.92 8.28 

FW Toxaphene 19.23 9.95 1.93 14.01 4.69 2.99 7.56 1.09 6.94 

MW Toxaphene 19.28 10.56 1.83 14.27 5.09 2.80 7.58 1.02 7.43 

MW Zinc 18.84 9.53 1.98 14.85 5.32 2.79 7.55 0.99 7.63 
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Figure 3A1.  Sample coefficients of variation resulting from Monte Carlo simulations of 1-day observations, for input Long-Term Averages based 

on lognormal percentiles.  Means are indicated by solid diamonds. 
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Figure 3A2.  Exceedance rates for Monte Carlo simulations of 1-day observations compared to acute criteria and 4-day running averages 

compared to chronic criteria for each parameter, for input Long-Term Averages based on lognormal percentiles.  Means are indicated by solid 

diamonds. 
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