

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

PO Box 47600 • Olympia, WA 98504-7600 • 360-407-6000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

Memorandum

Air Quality Program

January 16, 2019

To:	460 Rulemaking Stakeholders
From:	Elena Guilfoil, Environmental Planner Ranil Dhammapala, Atmospheric Scientist
Subject:	Updating the Small Quantity Emission Rates

Chapter 173-460 WAC, Controls for New Sources of Toxic Air Pollution Sources, establishes the list of toxic air pollutants and includes the following for each pollutant:

- Acceptable source impact level (ASIL) an emissions level requiring a refined modeling evaluation.
- Small quantity emission rate (SQER) a screening level for emissions that does not require dispersion modeling. Emissions below the SQER pose little risk to public health.
- De minimis emission level trivial level of emissions that does not pose a public health or environmental risk established at five percent of the SQER. A rate of increased emissions equal to or higher than a de minimis emission level requires an air quality permit (notice of construction approval order).

How did we update the small quantity emission rates?

Each toxic air pollutant in WAC 173-460-150 has a small quantity emission rate (SQER). The SQER values are derived from the acceptable source impact level (ASIL) values, back-calculated through screening level air dispersion modeling using AERSCREEN Version 16216. We examined several possible source and building configurations to simulate a realistic yet conservative scenario that would apply anywhere.

AERSCREEN Model Configuration

The following model inputs and calculations were used to establish SQER values.

Parameter	Value	
Emission rate	1 gram per second	
Point source stack height	10, 10.5 and 11 meters	
Point source stack diameter	0.33 meters	
Point source exit velocity	1, 5 and 10 meters per second	
Point source stack temperature	Ambient	
Point source stack location	Four locations	
	• Southwest corner of building	
	Building centroid	
	• Center of each horizontal dimension	
Volume source side length	0.5, 1,2 and 3 meters	
Volume source release height + initial	• 5 + 5.5 meters	
vertical dimension	• $6.5 + 4$ meters	
	• 7.5 + 3 meters	
	• 10 + 0.5 meters	
Flagpole receptor height	1.6 meters	
Urban or rural dispersion	Rural	
Building downwash	Only applies to point sources	
Building height	10 meters	
Building dimensions	10 x 20 meters	
Terrain effects	No	
Meteorology options	• Temperature 250 – 310K (Kelvin)	
	• Minimum wind 0.5 meters per second	
	• Friction velocity adjusted (Adj_u*)	
Surface characteristics	Desert shrubland	
	Grassland	
	Cultivated land	
Receptor distances	5 to 50 meters in 5 meter increments	

AERSCREEN Model Results

The median of all concentrations between 5 and 50 meters downwind of the source predicted by each of the 124 model runs was $4282 \,\mu g/m^3$. We consider this a robust and sufficiently conservative estimate of the concentration resulting from an emission rate of 1 gram per second.

Calculation	Carcinogenic TAP	Non-carcinogenic TAP	Acute reference exposure level ¹
Averaging period	Year	24-hour	1-hour
Emission unit	Grams/second	Grams/second	Grams/second
Formula	ASIL/(4282*0.1)	ASIL/(4282*0.6)	ASIL/4282
Result	Pounds/year	Pounds/day	Pounds/hour

SQER Calculations

TAP means toxic air pollutant.

We used the following calculations to establish SQER values for the year, 24-hour and 1-hour ASIL.

Year ASIL

$$SQER (lb/year) = \left[\frac{Annual ASIL \left(\frac{\mu g}{m^3}\right) x 60 \left(\frac{sec}{min}\right) x 60 \left(\frac{min}{hr}\right) x 8760 \left(\frac{hr}{yr}\right)}{4282 \left(\frac{\mu g}{m^3}\right) x 0.1 x 453.6 \left(\frac{g}{lb}\right)} \right] / 1 \left(\frac{g}{sec}\right)$$

24-hour ASIL

SQER (lb/day) =

$$\frac{\left[\frac{24 - \text{hr ASIL } \left(\frac{\mu g}{\text{m}^3}\right) \times 60 \left(\frac{\text{sec}}{\text{min}}\right) \times 60 \left(\frac{\text{min}}{\text{hr}}\right) \times 24 \left(\frac{\text{hr}}{\text{day}}\right)}{4282 \left(\frac{\mu g}{\text{m}^3}\right) \times 0.6 \times 453.6 \left(\frac{\text{g}}{\text{lb}}\right)}\right] / 1 \left(\frac{g}{\text{sec}}\right)$$

1-hour ASIL

SQER (lb/hour) =

$$\left[\frac{1 - \operatorname{hr}\operatorname{ASIL}\left(\frac{\mu g}{\mathrm{m}^{3}}\right) \times 60 \left(\frac{\operatorname{sec}}{\mathrm{min}}\right) \times 60 \left(\frac{\mathrm{min}}{\mathrm{hr}}\right)}{4282 \left(\frac{\mu g}{\mathrm{m}^{3}}\right) \times 453.6 \left(\frac{g}{\mathrm{lb}}\right)}\right] / 1 \left(\frac{g}{\operatorname{sec}}\right)$$

Conversion Factors

Converting ppm to µg/m3

$$Y\left(\frac{\mu g}{m^3}\right) = \frac{(X \text{ ppm})(\text{molecular weight})}{24.45} \times 1000$$

¹ The 7/26/2018 draft ASIL table identifies 14 chemicals with a 1-hour acute reference exposure level.

Convert from	Convert to	Multiply hourly value by
1-hour average	1-hour or 3-hour average	1
1-hour average	8-hour average	0.9
1-hour average	24-hour average	0.6
1-hour average	Annual average	0.1

AERSCREEN conversion factors

Establishing a SQER for dimethyl and diethyl mercury

These compounds are known to cross the blood-brain barrier and to be highly neurotoxic. In the most recent known instance (1998) of a serious poisoning, a chemist died after spilling about 0.44-ml of dimethyl mercury onto a gloved hand. In light of that, in the last rule-making, we intentionally set the ASIL, SQER, and de minimis emission values for both dimethyl mercury and diethyl mercury to 1.00E-99, which is extremely close to zero. Since then, we have reviewed health impacts assessments of several Hanford cleanup projects that have potential emissions of dimethyl mercury, but we have not received any project applications for diethyl mercury emissions.

Prenatal brain development is sensitive to very small amounts of dimethyl- and diethyl mercury. Maternal inhalation of contaminated air exposes the fetus via placental transfer from the maternal bloodstream. Based on evaluation of dimethyl mercury research and other available information, we are proposing an ASIL of 0.14-ug/m3 (daily TWA) for dimethyl- and diethyl mercury, as part of this rulemaking effort. The corresponding SQER and de minimis values will be derived using the same methods we use for other toxic air pollutants.