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About this report 
The following report is a deliverable for contract MOA-2013-038 (Annex #002)/8963 between the Washington 
State Department of Natural Resources and the National Centers for Coastal Ocean Science (NCCOS). Two 
additional reports under this contract will provide the state with 1) information to prioritize seafloor mapping 
and 2) an assessment of marine mammal datasets available within coastal and offshore waters (Kracker and 
Menza 2015). A preceding report, prepared under a different contract by NCCOS for the state, provided a 
summary of existing seabird datasets (Menza et al. 2014). 
 
NCCOS science provides coastal managers the information and tools they need to balance society’s 
environmental, social, and economic goals. NCCOS is the primary coastal science arm within the National 
Oceanic and Atmospheric Administration (NOAA) National Ocean Service. NCCOS works directly with 
managers, industry, regulators, and scientists to deliver relevant, timely, and accurate scientific information and 
tools. 
 
This report supports the NOAA Coastal Zone Management Program, a voluntary partnership between the 
federal government and U.S. coastal and Great Lakes states and territories authorized by the Coastal Zone 
Management Act (CZMA) of 1972 to address national coastal issues. The act provides the basis for protecting, 
restoring, and responsibly developing our nation’s diverse coastal communities and resources. To meet the 
goals of the CZMA, the national program takes a comprehensive approach to coastal resource management- 
balancing the often competing and occasionally conflicting demands of coastal resource use, economic 
development, and conservation. A wide range of issues are addressed through the program, including coastal 
development, water quality, public access, habitat protection, energy facility siting, ocean governance and 
planning, coastal hazards, and climate change. Accurate maps of seabird distributions are an important tool for 
making informed management decisions that affect all of these issues. 
 
For more information contact:  
Charles Menza 
National Centers for Coastal Ocean Science 
Center for Coastal Monitoring and Assessment 
(301) 713-3028 x107 
charles.menza@noaa.gov 
  

mailto:charles.menza@noaa.gov
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Summary 
This report presents seasonal distribution maps of selected seabird species off the Pacific coast of Washington. 
Maps were created to support state-led marine spatial planning by identifying ecologically important areas for 
seabirds. Seabird distribution maps were constructed by predicting relative density across the seascape using 
associative models linking at-sea seabird observations with environmental covariates. Seabird observations 
were compiled from federal and state monitoring programs with data between 2000 and 2013. Environmental 
variables were processed from long-term archival satellite, oceanographic, and hydrographic databases. All 
models show good to excellent performance based on model performance diagnostics and expert review. 
Although this work was completed to support marine spatial planning by the state of Washington, these data 
will benefit other organizations and other purposes including assessments of marine sanctuary condition, 
ecosystem health, coastal hazard impacts, and climate change. 

Introduction 
Washington depends on a healthy coastal and marine ecosystem to maintain a thriving economy and vibrant 
communities. Marine ecosystems support critical habitats for wildlife and a growing number of ocean activities, 
such as fishing, transportation, aquaculture, recreation, and energy production. Planners, policy makers, and 
resource managers are being challenged to sustainably balance multiple ocean uses and environmental 
conservation mandates in a finite space and with limited information. This balancing act can and should be 
supported by spatial planning. 
 
Marine spatial planning (MSP) is a planning process that enables integrated, forward-looking, and consistent 
decision making on the human uses of the oceans and coasts (Ehler and Douvere 2009). It can improve marine 
resource management by planning for human uses in locations that reduce conflict among different activities, 
and supports a balance among social, economic, and ecological benefits received from ocean resources. 
 
In March 2010, the Washington state legislature enacted a marine spatial planning law (RCW §43.372) to 
address resource use conflicts in waters off Washington. In 2011, a report to the legislature and a workshop on 
human use data provided guidance for the marine spatial planning process. In 2012, the governor amended the 
existing law to focus funding on mapping and ecosystem assessments for Washington’s Pacific coast and the 
legislature provided $3.7 million in the FY 13-15 biennium to begin marine spatial planning off Washington’s 
coast. The funds were appropriated through the Washington Department of Natural Resources Marine 
Resources Stewardship Account with coordination among the State Ocean Caucus, the four Coastal Treaty 
Tribes, four coastal Marine Resource Committees, and the Washington Coastal Marine Advisory Council. 
 
Seabirds are a conspicuous and ecologically important component of the marine ecosystem off Washington. 
They are typically long-lived, move over broad spatial ranges, and feed at a variety of trophic levels (Schreiber 
and Burger 2001). As such, they are responsive to changes in the marine and coastal environment, and can be 
useful indicators of environmental change. Seabirds are also important to coastal economies and provide direct 
eco-tourism benefits to coastal communities through recreational bird-watching opportunities (U.S. Fish and 
Wildlife Service 2013). 
 
Many seabird populations have decreased in recent decades (Paleczny et al. 2015). They are threatened by 
impacts of various ocean activities such as coastal development, fishing, resource extraction, and renewable 
energy development (Croxall et al. 2012). Given changes in population numbers and their economic and 
ecological importance, all seabird species off Washington are subject to conservation requirements under the 
Migratory Bird Treaty Act and some under the U.S. Endangered Species Act. Other species are listed in 
Washington State’s list of species of concern (Washington Department of Fish and Wildlife 2015). To minimize 
the potential for adverse effects of ocean uses on seabirds, coastal zone managers need information on seabird 
distribution, abundance, and movements. 



3 
 

Model Development 
Species selected for modeling 
This report focuses on developing maps for seven seabird species (Table 1): Marbled Murrelet (Brachyramphus 
marmoratus), Tufted Puffin (Fratercula cirrhata), Common Murre (Uria aalge), Black-footed Albatross 
(Phoebastria nigripes), Northern Fulmar (Fulmarus glacialis), Pink-footed Shearwater (Puffinus creatopus) and 
Sooty Shearwater (Puffinus griseus). The seven species were chosen by the Washington Department of Ecology 
and the Washington Department of Fish and Wildlife (WDFW), because they were species of management 
concern or representative of different seabird life history patterns. The Marbled Murrelet is listed as threatened 
by the state and U.S., the Tufted Puffin is listed as endangered by the state, and the Common Murre is listed as a 
candidate species of concern by the state (Washington Department of Fish and Wildlife 2015, U.S. Fish and 
Wildlife Service 2005). The state requested models for Short-tailed Albatross as well, but we were unable to 
model the species due to insufficient sightings. Important habitats, life history patterns, population changes over 
time, and threats for each of the modeled species are well referenced by Schreiber and Burger (2001) and U.S. 
Fish and Wildlife Service (2005). In addition, Washington has several active research programs that examine 
trends in seabird populations (http://wdfw.wa.gov/conservation/research/projects/seabird/). 
 
Table 1: Seabird species chosen for modeling. Segments represent modeling analysis units and are discussed 
more fully in the Seabird observation processing section. Typically segments are 3 kilometer long transects.  

    
Number of segments with sightings 

Common name Scientific name Family 
Species 
code Total 

April to  
October 

November  
to March 

Marbled Murrelet Brachyramphus marmoratus Alcidae mamu 1,632 1,625 7 
Tufted Puffin Fratercula cirrhata Alcidae tupu 1,744 1,738 6 
Common Murre Uria aalge Alcidae comu 6,938 6,533 405 
Black-footed Albatross Phoebastria nigripes Diomedeidae bfal 508 421 87 
Northern Fulmar Fulmarus glacialis Procellariidae nofu 475 463 12 
Pink-footed Shearwater Puffinus creatopus Procellariidae pfsh 611 611 0 
Sooty Shearwater Puffinus griseus Procellariidae sosh 2,611 2,586 25 
 
Study area 
The geographic scope of this study extends north to south from Cape Flattery to Cape Disappointment, and east 
to west from the Pacific coast of Washington to approximately the 700 fathom (~1300 m) depth contour (Figure 
1). This area covers all of the continental shelf adjacent to Washington and the upper portion of the continental 
slope. It includes the entire Olympic Coast National Marine Sanctuary (OCNMS), and Flattery Rocks, 
Quillayute Needles and Copalis National Wildlife Refuges. It excludes Willapa Bay and Grays Harbor, the 
Strait of Juan de Fuca, the Lower Columbia River Estuary, and the Salish Sea. The 700 fathom depth contour 
limit was proposed by the WDFW to delimit the marine area with the most human activity (Washington 
Department of Ecology 2014). 
 
The study area is used by at least 100 different species of marine birds and shorebirds (OCNMS 2008). Birds 
use the area for a variety of purposes including foraging within nearshore and offshore habitats, breeding among 
isolated islands, and migrating between breeding and wintering areas outside of the study area. 

http://wdfw.wa.gov/conservation/research/projects/seabird/
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Figure 1: Map of the study area (red line) used to model seabird distributions. Olympic Coast 
National Marine Sanctuary is designated by the gray shading. 200, 500, and 1000 m isobath 
contours are shown as solid, large dashed, and small dashed gray lines, respectively. This map 
serves as a reference map of locations for this report. 
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Seabird data sets 
Species distributions were modeled using a compilation of at-sea observations collected by eight seabird survey 
programs (Table 2). Each program collected spatially-explicit seabird observations within a sampling domain 
which overlapped the study area, and in some cases extended well beyond the study area. Most programs 
collected data over multiple years, although not necessarily consecutively. The programs include sightings from 
small boats, large vessels, and fixed-wing aircraft. In most cases, survey programs collected observations within 
strip transects. Taken together, the spatial distribution of survey programs represents a discontinuous patchwork 
of observation effort in the study area (Figure 2). Additional information for each survey program is provided in 
Appendix A. 
 
Table 2: Survey programs used for modeling seabird distributions and the corresponding number of segments 
across all months (Total), and two time periods. 

Seabird survey program 
Number of segments 

Total April to 
October 

November 
to March 

Pacific Continental Shelf Environmental Assessment (PaCSEA)* 1,040 791 249 

ORegon, CAlifornia, and WAshington Line-transect Expedition 
(ORCAWALE) marine mammal survey 194 194 0 

Collaborative Survey of Cetacean Abundance and the Pelagic Ecosystem 
(CSCAPE) 459 459 0 

Seasonal Olympic Coast National Marine Sanctuary Surveys 758 758 0 

Annual Olympic Coast National Marine Sanctuary Surveys 517 517 0 

Northwest Fisheries Science Center (NWFSC) Northern California Current 
Seabird Surveys 1,548 869 679 

Northwest Forest Plan Marbled Murrelet Effectiveness Monitoring 
Program 6,684 6,684 0 

Pacific Coast Winter Seaduck Survey 287 0 287 

Totals 11,487 10,272 1,215 

*PaCSEA segments were not used to model Tufted Puffin or Sooty Shearwater because they were not identified 
to species during these surveys. 
 
Pelagic transects were typically longer than 25 km and ran perpendicular to shore or followed a sawtooth 
pattern across the continental shelf. Nearshore transects typically ran parallel to shore. Transects ranged from 25 
km to hundreds of km long and were spaced from 5 to 125 km apart.  
 
A subset of observations within each survey program was used for analysis. The subset included observations 
extending 10 km outside the outer perimeter of the study area, and observations collected from 2000 to 2013. 
Several of the survey programs obtained data prior to 2000, but we chose to focus analysis on data collected 
after 2000 to ensure results reflected relatively recent spatial patterns. 
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Seabird observation processing 

Figure 2: Spatial distribution of seabird survey programs, represented by the location of processed 
transect segment coordinates. Segments from the Northwest Forest Plan Marbled Murrelet Effectiveness 
Monitoring Program are shown separately in the inset panel, because they obscure visibility of other 
program data. Olympic Coast National Marine Sanctuary is designated by gray shading. 200, 500, and 
1000 m isobath contours are shown as solid, large dashed, and small dashed gray lines, respectively. 
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A series of custom-built processing routines written in R (R Core Team 2015) were used to extract and reformat 
observations within survey transects. Transects were divided into a series of mutually-exclusive sections and 
subsequent segments according to changes in observation effort and sea state (Figure 3). Only transect sections 
with observers “on effort” were selected for segmentation.  
 
We used a modified version of a processing routine written by Karin Forney (Southwest Fisheries Science 
Center [SWFSC]) and Elizabeth Becker (SWFSC) to divide each transect section into discrete segments. The 
routine divides sections into predominantly 3 km segments, but also includes a subroutine to use the remainder 
of a section after 3 km segments are identified. The routine first determines the number of 3 km segments which 
fit within each “on effort” section and the length leftover after segmentation. If the remainder was greater than 
or equal to 1.5 km long, the corresponding subsegment was assigned to a randomly selected location along the 
transect. If the remainder was less than 1.5 km, the subsegment was added to a randomly selected segment. The 
routine randomizes the location of transect breakpoints, but does not change the location of observations. The 
randomization was necessary to ensure smaller subsegments did not always occur at the end of a transect.  
 
For all transects, except those which were part of the PaCSEA and NWFSC Northern California Current 
Seabird Surveys (Table 2), linearly interpolated track lines were generated from geographic positions provided 
with observations. The track lines consisted of regularly spaced coordinates at spatial resolutions of 
approximately 10 m, and were used to identify segment coordinates. The midpoint of each segment was 
calculated from the average of x- and y-coordinates within the corresponding segment track line. Track lines 
were not generated for PaCSEA and NWFSC Northern California Current Seabird Surveys because the data 
were provided processed into 3 km segments with midpoint coordinates. 
 
Observations were divided into two non-overlapping time periods based on month of observation: April to 
October and November to March. These two seasons generally correspond to the major upwelling and 
downwelling oceanographic seasons off the coast of Washington, respectively (Mann and Lazier 2006). We 
expected the spatial distribution of seabirds to differ between these two time periods, due to changes in physical 
water properties, weather, seabird life history, and primary productivity. 
 
All birds of the same species within a segment regardless of bird size or life history stage were summed to 
produce species counts per segment. The resulting metric, counts per segment, was entered into models with an 

Figure 3: Schematic of the segmentation process used to partition seabird observations along transects. 
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area offset calculated as the product of segment strip width and segment length. Consequently, model output is 
a measure of relative density defined as counts per square kilometer (sq. km). Most survey programs used a 
strip width of either 150, 200 or 300 m, but when a strip width was not defined, only observations within 300 m 
of the ship were analyzed. 
 
Predicted densities are considered relative, not absolute measures of abundance per unit area. Relative density is 
sufficient to achieve our objective of identifying species-specific areas of higher density. Our models assume 
the effect of detection on predicted relative density for a given species is consistent across the study area; 
however, we expect that sighting condition (such as sea state) affects detection and future models could be 
improved by incorporating this measure. 
 
Spatiotemporal coverage of seabird data  
The distributions of processed segments were explored by month, year, and distance to shore to examine broad 
scale spatiotemporal patterns of the modeled seabird data. These patterns provide context for interpreting the 
final model maps. 
 
Seabird observations were most often collected in the upwelling season, especially May to July, and close to 
shore (Table 3). There are many fewer observations at the beginning and end of the upwelling period (April, 
and August to October), and during the entire downwelling period (November to March). The downwelling 
period has no data before 2008 and the vast majority of data was collected in March, at the end of the season. 
Across all seasons the number of observations in the study area has generally increased over time, mainly 
because of an increase in offshore effort over time. Plots of each species’ observed densities averaged by month 
are provided in Appendix D. 
 
Environmental predictors 
A wide range of predictor variables were used to model variation in the number of birds sighted per transect 
segment and to predict the relative density of birds throughout the study area (Table 4). Predictor variables fell 
into one of six categories: survey, temporal, geographic, topographic, physical oceanographic, and biological. 
Appendix B provides detailed processing steps. 
 
Survey predictor variables were designed to account for variation in counts arising from heterogeneity in the 
type of survey platform (e.g., boat or fixed-wing aircraft), characteristics of the survey platform (e.g., 
observation height), observer identity and expertise, species focus, and sighting conditions. These factors 
influence the probability that individual birds will be detected and correctly identified to the species level. Of 
these factors, only the type of survey platform was consistently recorded in all datasets, and thus was directly 
usable as a predictor variable. We attempted to account for the effects of the remaining factors through two 
random-effect predictor variables representing survey identity (ID) and transect ID, respectively. The exact 
definition of transect ID differed somewhat between datasets, but unique transect IDs generally represented pre-
defined survey transects or individual days of effort. 
 
Temporal predictor variables were designed to account for variation in the numbers of birds within the study 
area over time. Julian day was used to account for changes within a season (e.g., arising from migratory 
movements in and out of the study area), and year was used to account for changes across years (e.g., arising 
from changes in population abundance or distributional shifts). Effects of Julian day and year were modeled as 
smooth continuous changes over time. Four climate indices (Table 4) were also included as temporal predictor 
variables to account for variation arising from linkages between the environment and seabird density. 
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Table 3: Distribution of seabird segments across months, years, and bands of distance to shore. Three 
contingency tables are shown: month by year, distance to shore by year, and distance to shore by 
month. Cell colors highlight areas of relatively high (red), medium (orange), and low (green) values 
within each contingency table. Colors vary by panel and stretch according to each panel’s data range. 
The months between April and October, representing the modeled upwelling season, are shaded in grey. 
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Jan 0 0 0 0 0 0 0 0 0 0 0 168 0 0 1%
Feb 0 0 0 0 0 0 0 0 0 0 0 0 195 0 2%
Mar 0 0 0 0 0 0 0 0 161 254 156 131 150 0 7%
Apr 0 0 0 0 0 0 0 0 0 175 0 0 0 0 2%
May 41 96 29 148 380 77 144 187 211 162 93 178 168 115 18%
Jun 73 144 511 153 182 542 258 231 361 281 397 513 308 176 36%
Jul 79 122 316 186 212 227 172 168 286 254 162 158 450 209 26%
Aug 0 0 0 0 0 0 56 51 30 0 0 0 46 0 2%
Sep 0 96 0 0 0 0 17 52 53 50 0 0 189 0 4%
Oct 0 0 0 0 0 45 0 0 0 0 51 201 0 0 3%
Nov 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0%
Dec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

% of all 
observations 2% 4% 7% 4% 7% 8% 6% 6% 10% 10% 7% 12% 13% 4%
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10 - 25 km 0 15 87 0 111 127 51 51 199 287 110 223 295 0 14%
25 - 50 km 63 121 204 165 171 150 172 191 229 180 224 245 280 177 22%
50 - 200 km 0 67 108 0 133 234 72 62 201 236 42 248 321 0 15%
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0 - 5 km 7 5 150 3 845 1668 1613 7 8 9 0 0 38%
5 - 10 km 45 62 156 26 215 464 161 35 89 67 0 0 11%
10 - 25 km 45 55 217 91 286 512 121 49 108 72 0 0 14%
25 - 50 km 14 37 72 2 495 1003 887 11 31 20 0 0 22%
50 - 200 km 57 36 257 53 188 483 219 81 221 129 0 0 15%

% of all 
observations 1% 2% 7% 2% 18% 36% 26% 2% 4% 3% 0% 0%
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Geographic predictor variables were designed to account for variation in counts arising from spatial location per 
se. Isotropic x- and y-coordinates (based on projected longitude and latitude values) were included as predictor 
variables and their effects were modeled two ways. The first (x, y)-coordinate term allowed for smooth changes 
in numbers across the study area arising from spatial factors not captured by the other predictor variables. For 
example, none of the predictor variables capture colonization history or association with fishing vessels. The 
second term was formulated using radial basis functions to capture residual spatial autocorrelation in the data, 
after accounting for the effects of other predictor variables. Absolute distance to shelf break (200 m isobath), 
distance to colony (for Common Murre and Tufted Puffin), and distance to nesting habitat (for Marbled 
Murrelet) were also included as geographic predictor variables. 
 
Topographic variables were designed to account for variation in counts arising from the direct and indirect 
effects of depth and seafloor features on bird distributions. Six different bathymetric datasets were used as 
topographic variables (Table 4). Depth, planform curvature, profile curvature, and slope were available through 
MARSPEC, a high-resolution GIS database of ocean climate and topographic layers (Sbrocco and Barber 2013; 
http://www.marspec.org/). A bathymetric position index was derived from the MARSPEC depth layer.  
 
Physical oceanographic predictor variables were designed to account for variation in counts arising from the 
direct and indirect effects of the physical state and dynamics of the ocean. Five physical oceanographic 
predictor variables were developed from a range of data sources, including one from MARSPEC (Table 4). 
Remote sensing data were used to characterize sea surface salinity and temperature. Probabilities of cyclonic 
and anticyclonic eddy rings and probability of sea surface temperature fronts were derived from the remotely 
sensed variables. 
 
Two biological predictor variables, chlorophyll a concentration and the frequency of chlorophyll peaks index 
(FCPI) developed by Suryan et al. (2012), were included to account for variation in counts arising from the 
direct and indirect effects of ocean productivity (Table 4). Although both predictors comprise measures of 
chlorophyll a concentration, they were not correlated (Table 5). This was expected since the FCPI is an 
indicator of anomalous conditions that differ from the chlorophyll a concentration average. 
 
All of the physical oceanographic and biological variables that we considered are dynamic. To associate 
dynamic variables with seabird density and develop long-term predictions, dynamic variables, except for FCPI, 
were summarized into two seasonal climatologies. Data time series ranging from 11 to 22 years were used to 
estimate monthly mean climatologies. Monthly climatologies were then averaged within two non-overlapping 
seasons: April to October and November to March, which correspond to the major upwelling and downwelling 
oceanographic seasons off the coast of Washington, respectively (Mann and Lazier, 2006). The same temporal 
divisions were also used to partition seabird observations. FCPI was a non-seasonal climatology; however, 
Suryan et al. (2012) noted that the FCPI is in part related to peak seasonal chlorophyll a concentration values 
(i.e., during June-July). 
 
Geographic, topographic, physical oceanographic, and biological predictor variables were spatially explicit. 
Each variable was calculated on a standard study grid projected onto zone 10N of the Universal Transverse 
Mercator coordinate system and with a spatial resolution of 3 km. When the native spatial resolution of a 
predictor variable was finer than that of the study grid, predictor values were averaged within study grid cells. 
When the native spatial resolution of a predictor variable was similar to or coarser than that of the study grid, 
bilinear interpolation was used to derive predictor values at the center of study grid cells. For many data sets the 
native spatial extent did not perfectly align with our land mask. To fill in missing values close to shore, we 
extrapolated values to the coastline using the “Springs” algorithm in the inpaint_nans MATLAB function 
(http://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans). Each survey transect segment was 
matched to the predictor variable values from the study grid cell that contained the midpoint of that segment. 
  

http://www.marspec.org/
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Table 4: Predictor variables used in the models. Additional information is provided in Appendix B for 
predictors with an asterisk. 
 

 
 
  

Predictor variable Code Native resolution Source 
Survey variables    

Survey platform platform Categorical variable Seabird datasets 
Survey ID survey Categorical variable Seabird datasets 
Transect ID transect Categorical variable Seabird datasets 

Temporal variables    
Julian day jday 1 day Seabird datasets 
Year year 1 year Seabird datasets 
Multivariate El Niño-Southern 
Oscillation Index (current and 12 month 
lag) 

mei, mei.lag12 Monthly NOAA ESRL 

North Pacific Gyre Oscillation Index 
(current and 12 month lag) 

npgo, npgo.lag12 Monthly Georgia Tech  

Pacific Decadal Oscillation Index 
(current and 12 month lag) 

pdo, pdo.lag12 Monthly NOAA ESRL  

Upwelling index (current and 12 month 
lag) 

upi, upi.lag12 Monthly Pacific Fisheries Environmental 
Laboratory 

Geographic variables    
X-coordinate coords.x n/a Seabird datasets 
Y-coordinate coords.y n/a Seabird datasets 
Distance to 200 m isobath* dist2isobath 50 km Derived from depth layer  
Distance to Common Murre colony* dist2comu 3 km Derived from Washington Seabird 

Colony Catalog (source WDFW) 
Distance to Marbled Murrelet nesting 
habitat* 

dist2mamu 3 km Derived from Marbled Murrelet 
critical habitat (source: USFWS site) 

Distance to Tufted Puffin colony* dist2tupu 3 km Derived from Washington Seabird 
Colony Catalog (source WDFW) 

Topographic variables    
Depth* bathy 30 seconds (~ 700 m) MARSPEC 
Bathymetric position index (3 km)* bpi.3km 30 seconds (~ 700 m) Derived from depth layer 
Bathymetric position index (20 km)* bpi.20km 30 seconds (~ 700 m) Derived from depth layer 
Slope* slope 30 seconds (~ 700 m) MARSPEC 
Planform curvature* plcurv 30 seconds (~ 700 m) MARSPEC 
Profile curvature* prcurv 30 seconds (~ 700 m) MARSPEC 

Physical variables (seasonal 
climatologies) 

   

Probability of anticyclonic eddy ring*  anticyc 0.25 degrees (~ 25 km) AVISO 
Probability of cyclonic eddy ring* cyc 0.25 degrees (~ 25 km) AVISO 

 
Sea surface salinity* salinity 30 seconds (~ 700 m) MARSPEC 
Sea surface temperature* sst 0.05 degrees (~ 5.5 km) Aqua MODIS 
Probability of sea surface temperature 
front* 

front 0.05 degrees (~ 5.5 km) GOES Imager  

Biological variables (seasonal and non-
seasonal climatologies) 

   

Surface chlorophyll a* chla 0.05 degrees (~ 5.5 km) Aqua MODIS 
Frequency of chlorophyll peaks index* fcpi 9 km Provided by Rob Suryan 

http://www.esrl.noaa.gov/psd/data/correlation/mei.data
http://www.o3d.org/npgo/npgo.php
http://www.esrl.noaa.gov/psd/data/correlation/pdo.data
http://www.pfeg.noaa.gov/products/PFELData/upwell/monthly/upindex.mon
http://www.pfeg.noaa.gov/products/PFELData/upwell/monthly/upindex.mon
http://wdfw.wa.gov/
http://www.fws.gov/wafwo/mamu.html
http://wdfw.wa.gov/
http://www.marspec.org/
http://www.marspec.org/
http://www.marspec.org/
http://www.marspec.org/
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt.html
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt.html
http://www.marspec.org/
http://podaac.jpl.nasa.gov/SeaSurfaceTemperature/MODIS
http://coastwatch.pfeg.noaa.gov/erddap/griddap/erdGAtfntmday.html
http://modis.gsfc.nasa.gov/
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A small number of the spatially explicit predictor variables were correlated with each other (Table 5). Since 
some correlations remain relatively high (i.e., greater than 0.7), inferences regarding the association between 
relative variable importance and a functional ecological relationship with seabird density should be made with 
caution. The accuracy of predictions is less affected by collinearity among predictor variables. 
 
Table 5: Pairwise Spearman’s rank correlation coefficients (rho) for spatial predictor variables (excluding x- 
and y-coordinates) during the months of April to October (above diagonal) and November to March (below 
diagonal). High correlations are highlighted (0.7 ≤ |rho| < 0.8 in yellow, 0.8 ≤ |rho| < 0.9 in orange). 
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bathy  0.12 0.26 0.66 -0.30 -0.76 -0.32 -0.29 -0.18 0.08 -0.51 -0.28 0.72 -0.01 -0.39 -0.59 0.01 
bpi.20km 0.21  0.64 -0.31 -0.35 0.05 -0.37 -0.07 0.03 -0.13 0.28 -0.04 0.09 -0.38 0.16 0.30 -0.42 

bpi.3km 0.15 0.50  -0.10 -0.40 -0.11 -0.42 -0.17 0.09 -0.21 0.34 -0.12 0.20 -0.36 0.00 0.17 -0.38 
dist2isobath 0.78 -0.02 0.01  -0.14 -0.65 -0.15 -0.17 -0.24 0.17 -0.59 -0.08 0.59 0.17 -0.34 -0.63 0.31 

dist2comu -0.25 0.01 -0.08 -0.10    -0.01 0.07 -0.03 -0.08 0.28 -0.57 0.61 -0.02 -0.25 0.64 
dist2mamu -0.80 -0.01 -0.02 -0.59    0.25 0.25 -0.14 0.55 -0.07 -0.80 0.21 0.48 0.54 -0.10 

dist2tupu -0.26 0.00 -0.08 -0.11    0.00 0.11 -0.08 -0.06 0.27 -0.62 0.63 -0.03 -0.26 0.65 
fcpi -0.24 0.17 0.03 -0.21 -0.11 0.43 -0.11  0.06 -0.11 0.12 0.27 -0.23 -0.07 0.29 0.35 -0.14 

plcurv -0.09 -0.19 0.17 -0.06 -0.01 -0.02 0.00 -0.16  -0.45 0.13 -0.03 -0.26 0.03 -0.09 0.09 -0.05 
prcurv 0.12 -0.16 -0.33 0.21 -0.11 -0.11 -0.12 0.02 -0.32  -0.11 -0.03 0.20 -0.09 0.08 0.02 0.02 
slope -0.75 -0.01 0.10 -0.77 0.17 0.53 0.17 0.08 0.07 -0.19  0.07 -0.41 -0.28 0.38 0.62 -0.36 

anticyc 0.34 0.05 -0.03 0.49 -0.04 -0.30 -0.04 0.03 -0.11 0.15 -0.45  -0.18 -0.22 0.14 0.18 0.32 
chla 0.83 -0.10 -0.04 0.68 -0.23 -0.84 -0.24 -0.49 0.02 0.14 -0.66 0.32  -0.30 -0.27 -0.33 -0.16 
cyc -0.46 0.09 -0.07 -0.13 0.49 0.47 0.49 0.32 -0.12 -0.03 0.13 0.30 -0.45  -0.13 -0.55 0.55 

front 0.10 0.26 0.19 0.09 -0.09 -0.09 -0.09 0.06 -0.16 0.08 0.09 0.05 0.02 0.01  0.53 -0.15 
salinity -0.72 0.09 0.06 -0.68 -0.14 0.74 -0.14 0.51 0.01 -0.11 0.63 -0.41 -0.87 0.13 -0.02  -0.63 

sst -0.48 0.12 -0.02 -0.21 0.60 0.46 0.60 0.30 -0.11 -0.07 0.24 0.28 -0.53 0.85 0.07 0.17  

 
Modeling process 
A statistical modeling framework was used to relate bird sightings data from surveys to a range of temporal and 
spatial environmental predictor variables. The estimated relationships between relative occurrence and 
abundance of birds with predictor variables, after accounting for area surveyed, were then used to predict the 
distributions of birds across the entire study area. These predictions generated the maps of modeled relative 
density we present in this report. Separate models were developed for each combination of species and season 
for which there were sufficient data. 
 
A boosted generalized additive modeling framework (Bühlmann and Hothorn 2007, Hofner et al. 2012) was 
used to estimate relationships between the numbers of birds counted per transect segment and the predictor 
variables, after accounting for area surveyed. Those relationships were then used to predict the relative density 
of each species throughout the study area in each season. Our main objective was to provide accurate 
predictions, so we chose a modeling framework that allowed for flexible relationships and multi-way 
interactions between predictor variables while accounting for sampling heterogeneity between and within 
datasets. This modeling framework was successfully applied to seabirds along the U.S. Atlantic coast (Kinlan et 
al. 2014). 
 
Likelihoods and model components 
The number of individuals of a given species counted per transect segment was modeled using zero-inflated 
Poisson (Equation 1) and zero-inflated negative binomial likelihoods (Equation 2) to account for the 
overdispersed nature of the count data. Each component/parameter of the likelihood was modeled as a separate 
function of the predictor variables (Schmid et al. 2008, Mayr et al. 2012). For the zero-inflated Poisson 
likelihood, the two model components were the probability of an ‘extra’ zero (𝑝𝑝; also referred to as “zero-
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inflation component”) and the mean of the Poisson distribution (𝜇𝜇; also referred to as “count component”). The 
same components were modeled for the zero-inflated negative binomial likelihood in addition to the dispersion 
parameter of the negative binomial distribution (𝜃𝜃). The probability of an extra zero was modeled on the logit 
scale while the mean of the Poisson/negative binomial distribution and the dispersion parameter of the negative 
binomial distribution were modeled on the log scale. 
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In the above equations, 𝑛𝑛 represents the total number of observations, 𝐼𝐼𝑦𝑦𝑖𝑖=0 is an indicator for whether or not 
𝑦𝑦𝑖𝑖 = 0 (i.e., 𝐼𝐼𝑦𝑦𝑖𝑖=0 equals 1 when 𝑦𝑦𝑖𝑖 = 0, zero otherwise), 𝐼𝐼𝑦𝑦𝑖𝑖>0 is an indicator for whether or not 𝑦𝑦𝑖𝑖 > 0, and 
Γ() is the usual gamma function: Γ(α) = ∫ 𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡∞

0 . 
 
Base-learners 
Within the boosting framework, each model component was constructed as a function of an ensemble of ‘base-
learners.’ Each base-learner represented a specific functional relationship between a model component and one 
or more predictor variables. We utilized a suite of base-learners each representing different predictor variables, 
and different sets of base-learners were employed for different model components (Table 6). 
 
Table 6: Base-learners employed in the boosted generalized additive modeling framework. Base-learner names 
are from the ‘mboost’ package for R (Hothorn et al. 2015, R Core Team 2015), and predictor variable names are 
defined in Table 4. 
Name Description Predictor variables Model component 
bols linear intercept 𝑝𝑝, 𝜇𝜇, 𝜃𝜃 
bols linear platform 𝑝𝑝, 𝜇𝜇, 𝜃𝜃 
brandom random effect survey 𝜃𝜃 
brandom random effect transect 𝑝𝑝, 𝜇𝜇 
bbs penalized regression spline1 year 𝑝𝑝, 𝜇𝜇 
bbs penalized regression spline1 jday 𝑝𝑝, 𝜇𝜇 
btree tree2 all climate indices (current and lagged) 𝑝𝑝, 𝜇𝜇 
bspatial penalized tensor product1 coords.x 

coords.y 
𝑝𝑝, 𝜇𝜇 

brad penalized radial basis3 coords.x 
coords.y 

𝑝𝑝, 𝜇𝜇 

btree tree4 dist2isobath 
dist2comu, dist2mamu, dist2tupu 
all topographic, physical oceanographic, and 
biological variables 

𝑝𝑝, 𝜇𝜇 

1 P-spline basis 
2 Maximum depth = 1 
3 Matern correlation function 
4 Maximum depth = 4, 5 
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All spatially explicit predictor variables except geographic coordinates were included together in a single tree 
base-learner. The trees for that learner had a maximum depth of 4 or 5, which allowed for interacting effects 
among the spatially explicit predictor variables. Geographic coordinates appeared in two base learners, and 
those variables always entered the model as a pair. The remaining survey and temporal predictor variables 
entered the model individually, either through their own base-learners or, in the case of climate indices, one at a 
time through a tree base-learner with a maximum depth of 1. Thus, our model structure did not allow for 
interactions between temporal and spatial predictor variables. 
 
Effort offset 
The mean of the Poisson/negative binomial distribution model component (𝜇𝜇) was additionally modeled with an 
effort offset, corresponding to segment survey area in sq. km, that was log transformed prior to entering the 
model. Therefore, resulting model predictions corresponded directly to relative density values (birds per sq. km) 
rather than relative count values (birds per segment). 
 
Stochastic gradient boosting 
Stochastic gradient boosting was used to fit models whereby a sub-sample of the data was fitted in each 
boosting iteration (Friedman 2002). Rather than resampling the data for each boosting iteration, a set of 25 or 50 
random samples was created before boosting, and one sample was randomly drawn from this set for each 
boosting iteration. Root mean square error (RMSE) was used to select the base-learner that gave the best fit to 
the gradient (all data) in each boosting iteration. 
 
Boosting offsets 
Model component estimates were initialized (‘offset’ in boosting terminology; Hofner et al. 2012) by 
conducting a preliminary generalized linear model (GLM) analysis. For that analysis, predictor variables were 
first reduced through principal component and cluster analyses to a smaller set of derived predictors. Those new 
predictors were then discretized into different numbers of classes. For each number of classes a GLM with a 
zero-inflated Poisson or zero-inflated negative binomial likelihood was fit, and the mean estimates for each 
model component were calculated. Model component estimates were then averaged across the fitted models 
with the different numbers of predictor classes, weighted by the Akaike Information Criterion (AIC) for those 
models. 
 
Tuning of shrinkage rate and number of boosting iterations 
A stratified (by transect ID) k-fold cross-validation approach was used to determine values for the shrinkage 
rate (nu) and number of boosting iterations (mstop) that resulted in the best predictive performance. The 
shrinkage rate was tuned first by fixing the number of boosting iterations and evaluating out-of-bag model 
performance in terms of the thresholded continuous rank probability score (CRPS) for different shrinkage rates. 
The number of boosting iterations was tuned second by fixing the shrinkage rate and evaluating out-of-bag 
model performance in terms of the negative log-likelihood. The number of boosting iterations at which 
performance was maximized was averaged across cross-validation samples (excluding the top and bottom 5%) 
and used as the number of boosting iterations for the final model fitting. If the number of boosting iterations 
was less than or greater than specified values, the shrinkage rate was decreased or increased, respectively, and 
the number of boosting iterations was tuned again. We allowed for a maximum of 20,000 boosting iterations, so 
models with boosting iterations above ~19,990 should be interpreted with caution as their performance may 
have improved with additional boosting iterations. A suite of cross-validation performance metrics were 
calculated during the tuning of mstop. 
 
Model performance and selection 
Four models were fit to each species-season combination: 1) zero-inflated Poisson with a maximum tree depth 
of 4 specified for the non-climate index predictors (Table 6), 2) zero-inflated Poisson with a maximum tree 
depth of 5, 3) zero-inflated negative binomial with a maximum tree depth of 4, and 4) zero-inflated negative 
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binomial with a maximum tree depth of 5. The performance of each of the four fitted models was evaluated 
from a suite of performance metrics. Cross-validation performance during the tuning of mstop in terms of the 
thresholded continuous rank probability score was used to select either the zero-inflated Poisson or the zero-
inflated negative binomial model as the final best model for each species and season. 
 
Spatial prediction 
The final fitted model for each species and season was used to predict relative density, defined as the mean 
number of individuals per square kilometer, throughout the study area. Relative density integrated both the 
zero-inflated and Poisson/negative binomial components of the likelihood. 
 
Spatially explicit predicted values were calculated for each cell of the study grid from the values of the spatially 
explicit predictor variables for that cell. Thus, the predicted relative density in a given grid cell corresponds to 
predictions for a transect segment whose mid-point falls within that grid cell. All other predictor variables were 
set to their mean values. 
 
Variable importance 
While our primary objective was not to determine the ecological drivers and mechanisms behind the spatial 
distributions of marine bird species in the study area, our model results do provide some indication of which 
variables were most useful for predicting those distributions. Those variables may provide useful starting points 
for future studies seeking ecological inference. 
 
We calculated the relative importance of a given predictor variable in the final fitted models by summing the 
decrease in the negative log-likelihood in each boosting iteration attributable to that predictor variable. Thus, 
variable importance reflects the frequency with which a given predictor variable occurred in the selected base-
learners across boosting iterations and that variable’s ability to explain variation in the data when it was 
selected. When multiple predictor variables occurred in the selected base-learner for a given boosting iteration, 
the decrease in the negative log-likelihood was divided evenly among those predictor variables. Relative 
variable importance was re-scaled so that it summed to one across predictor variables. 
 
Uncertainty 
Uncertainty in model predictions was estimated using a non-parametric bootstrapping framework. For each 
bootstrap iteration, the set of unique transect IDs was resampled with replacement, and the data for each 
transect ID were assigned weights proportional to the frequency of that ID in the sample. These data weights 
were then applied when fitting the model during that bootstrap iteration. Predictor variables that were not 
included in the final model were excluded from the bootstrap analysis. Two hundred bootstrap iterations were 
conducted producing a sample of predictions from which we calculated quantiles, confidence intervals, and 
coefficient of variation to characterize uncertainty in the predictions. This uncertainty information was mapped 
and is provided alongside seabird density maps.  
 
Implementation 
The analysis was coded in R (R Core Team 2015) and relied on multiple existing contributed packages (e.g., 
mboost; Hothorn et al. 2015). 
 
Review 
Contributors participated in several rounds of review in which model outputs were evaluated. This collaborative 
process led to significant improvements in model quality and the presentation of results. Over the course of 
model development, the following changes were made: excluding observations outside the study area and a 
narrow encircling buffer; improving the transect segmentation process using a routine developed by SWFSC; 
incorporating oceanographic climate indices as predictor variables; and adding diagnostic plots to address the 
impact of heterogeneous survey effort through space and time. 
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Model Results 
A range of performance metrics were chosen to assess model fit to observations, quantify model uncertainty, 
identify caveats, and describe the relationships between predictions and predictors. Table 7 and Appendix C 
show model performance metrics for final selected models and all fitted models, respectively (see Model 
performance and selection section for information on model selection).  
 
We provide brief descriptions of model outputs and show corresponding maps for each modeled seabird and 
season combination in the remainder of this section. Models were developed only when there were greater than 
50 segments with sightings for a given species; consequently, not all species were modeled during the 
downwelling season. This number was based on previous modeling experience and our assessment of sighting 
density requirements in the study area. The results intentionally focus on describing broad scale spatial patterns 
and how these relate to geographic places, predictors, and model diagnostics. The descriptions do not explore 
associations between model spatial patterns and seabird life history patterns, but this exploration would be a 
useful next step. Figure 1 can be used to identify the location of place names mentioned in the results. 
 
Marbled Murrelet (Brachyramphus marmoratus) 
April to October 
Predicted relative densities for Marbled Murrelet are high in waters less than 10 km from shore and along the 
Olympic Peninsula from Cape Flattery to the Copalis River (Figure 4). This stretch of nearshore water is within 
Olympic Coast National Marine Sanctuary and covers the three National Wildlife Refuges. The predictions of 
high density correspond well with observed patterns (Figure 4 inset). Relative densities decrease quickly with 
distance from shore. The segments of coast between Cape Flattery and Ozette Lake and between La Push and 
the Copalis River have the highest predicted relative densities for Marbled Murrelet within the study region. 
Model uncertainty is lowest near the shore and shows a clear longitudinal trend of increasing values from east to 
west (Figure 5b). This suggests low uncertainty and high confidence in coastal areas of high predicted relative 
density. 
 
Diagnostics indicate the Marbled Murrelet model is very good (Table 7); however, since transect ID was 
selected more times than any other predictor for both the zero-inflation and count components of the model, 
there is room to improve the predictor set. When transect ID is chosen most often, it suggests that the 
environmental predictors are doing a poor job of explaining variability in density. 
 
Tufted Puffin (Fratercula cirrhata) 
April to October 
Areas of highest predicted relative density are nearshore (<10 km from the coast) along the Olympic Peninsula 
north of the Hoh River and in deep offshore waters south of the Juan de Fuca Canyon (Figure 6). A band of 
moderately-high density is predicted to connect these two regions of high density. The predicted relative density 
patterns are consistent with known breeding colonies near the coast and suggest a possibly important large 
feeding area offshore. Model uncertainties are relatively low throughout the study area, with CV values 
generally increasing from northeast to southwest (Figure 7b). Model fit diagnostics indicate the Tufted Puffin 
model is very good (Table 7). Similar to the Marbled Murrelet model, transect ID was selected more times than 
any other predictor for both components of the selected model, suggesting that the environmental predictors do 
a poor job of explaining variability in density. 
 
Common Murre (Uria aalge) 
April to October 
Predicted relative density is highest in nearshore waters along the coast and drops off sharply in waters further 
than 25 km from shore (Figure 8). The areas of highest relative density are predicted to occur in nearshore 
waters and adjacent to Cape Flattery, Flattery Rocks National Wildlife Refuge, and the mouths of the 
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Quillayute, Quinault, and Columbia rivers. CVs generally increase from east to west and are relatively small in 
nearshore waters, except in small patches adjacent to areas with the highest relative densities (Figure 9a-b). 
Additionally, there is a small region of high predicted relative density with high uncertainty (i.e., high CV) in 
the northernmost part of the study area, near Swiftsure Bank, where the Juan de Fuca Eddy creates a seasonal 
area of upwelling. This could potentially be important habitat for Common Murre; however this prediction 
cannnot be confirmed due to lack of survey data in this region (Figure 8 inset). Model fit diagnostics are 
excellent (Table 7), and predicted and observed density spatial patterns correspond well where they overlap. 
 
November to March 
Relative densities of Common Murre are predicted to be high between the shelf-edge and 5 kilometers from 
shore, with a predicted latitudinal density gradient increasing towards the south of the study area (Figure 10). 
The highest predictions occur offshore from Grays Harbor and Willapa Bay. Unlike predictions for the months 
of April to October, Common Murres are predicted to be relatively rare in coastal waters less than 5 km from 
shore, especially in the southern half of the study area. This band of low density is clearly visible in 
observations. In general, uncertainty is low in areas of predicted high and moderate densities, and very low in 
waters deeper than 1000 m (Figure 11a-b).  
 
Model fit diagnostics are excellent (Table 7). Over the majority of the study area, predicted and observed spatial 
patterns of density correspond well, but there is a small area of moderately high predicted relative density and 
fairly low uncertainty at the northwestern edge of the study region, which should be cautiously interpreted. 
There was no survey coverage in this area between November and March and the patterns are inconsistent with 
the rest of the predictions. 
 
Black-footed Albatross (Phoebastria nigripes) 
April to October 
Relative density of Black-footed Albatross is predicted to be high along the shelf-edge (Figure 12) with the 
highest densities near submarine canyons, such as Barkley, Nitinat, Juan De Fuca, and Grays Canyons. 
Predicted relative density is low on the continental shelf, except in shelf waters adjacent to submarine canyons. 
A broad area of moderately high density is predicted in the northwest of the study area over Barkley and Nitinat 
Canyons and extending eastward to Swiftsure Bank. Model uncertainty is low in coastal waters, but CV values 
increase and become highly variable offshore near areas of high predicted relative density (Figure 13a-b). This 
may be due to the fact that Black-footed Albatross are highly mobile throughout their range and there were too 
few sightings in the observations data set. Model fit diagnostics are generally good (Table 7). 
 
November to March 
Predictions of relative density are highest off the northern coast of Washington, directly west of the Olympic 
Peninsula in waters roughly 200 to 1000 m deep (Figure 14). This area includes an area of low uncertainty (i.e., 
low CV) above Quillayute and Juan de Fuca Canyons. The majority of offshore predictions are characterized by 
high uncertainty, most likely due to the small number of sightings (and surveys) between the months of 
November and March (Table 1, Figure 14 inset, Figure 15b). Densities of Black-footed Albatross are predicted 
to be relatively low in waters on the continental shelf (depths shallower than 200 m). The vast majority of 
sightings in the downwelling season were in March (Appendix D), suggesting the seasonal map may reflect 
individuals arriving from winter breeding sites (Naughton et al. 2007), and is not representative of Black-footed 
Albatross distribution in other months.   
 
Northern Fulmar (Fulmarus glacialis) 
April to October 
Predictions are highest between the Juan de Fuca Canyon, Swiftsure Bank and Nitinat Canyon (Figure 16). This 
area of high density includes in the general location of the Juan de Fuca Eddy, where upwelling increases 
nutrient concentrations (MacFadyen et al. 2008). A narrow band of moderately high density is predicted to 
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extend south of the Juan de Fuca Canyon, along the shelf edge (i.e. 200 m depth contour). Predictions are 
relatively certain over most of the continental shelf where densities are predicted to be low, and uncertain in 
deeper waters. There is an area of low uncertainty at the center of the area with highest relative density 
predictions (Figure 17a-b). Model fit diagnostics for the Northern Fulmar model are excellent (Table 7). The 
predicted distribution was lower than expected in the southern part of the study area, and this may be caused by 
the relatively low number of observations along the shelf edge between August and October, the latter portion 
of the upwelling season. 
 
Pink-footed Shearwater (Puffinus creatopus) 
April to October 
Areas of high predicted relative density occur between the 100 and 200 m depth contours on the continental 
shelf (Figure 18). The region west of the Olympic Peninsula and surrounding the Juan de Fuca Canyon contains 
the highest predicted relative densities and low uncertainty. Coastal waters (<5 km from shore) have low 
predicted densities and generally low uncertainty (i.e., low CV values) (Figure 19a-b). Low predictions and 
high uncertainty characterize waters west of the 1000 m depth contour.  
 
Model performance metrics suggest a slightly poorer fit for Pink-footed Shearwater compared to models for 
other species, especially in areas where sightings occurred (Table 7). However, we feel the model performance 
is adequate and the resulting predictions of relative density are useful, especially for identifying regions of 
relatively low use.Transect ID was selected for the count component of the model more times than any other 
predictor, possibly suggesting that our suite of environmental predictor variables do a poor job of explaining 
variability in Pink-footed Shearwater densities during the months of April to October. 
 
Sooty Shearwater (Puffinus griseus) 
April to October 
A large contiguous zone of high predicted relative density runs south from nearshore waters off La Push, WA to 
the southern edge of the study area at the mouth of the Columbia River (Figure 20). This zone extends out to 25 
km from shore and includes coastal waters off of Grays Harbor, Willapa Bay, and the Columbia River. 
Moderately high relative density is predicted on the continental shelf north of La Push, except for waters within 
5 km from the coast. Observed densities are extremely variable across most of the study area, except in the 
south coastal region of the study area where the highest densities were observed. Given this variability and the 
nature of Sooty Shearwaters to form large aggregations, the extreme variability in CV values is expected. In 
general, model uncertainty is high in the south, southwest, and northeast regions of the study area, with smaller 
patches of high uncertainty near Willapa Bay and offshore between Grays Harbor and La Push, WA (Figure 
21b). Model fit diagnostics are good (Table 7). 
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Table 7: Performance metrics for the final selected model of each species-season combination. Also shown are number of transect segments with 
sightings, number of individuals sighted, proportion of transect segments with sightings (prevalence), and mean number of individuals per transect 
segment with sightings. All model performance metrics were calculated on the full dataset, except columns labeled “Cross-val,” which denote statistics 
calculated separately on cross-validation data. AUC values were calculated as the area under the relevant ROC curve. Rank R refers to Spearman’s rank correlation 
coefficient (Spearman’s rho statistic) for the observed vs. predicted count. Median absolute [residual] error (non-zero) and median [residual] bias (non-zero) were 
standardized by dividing by mean no. individuals per segment with sightings and multiplying by 100, so that values shown represent percentages of the mean 
number of individuals observed per segment on segments with at least one sighting. For details on the Brier score and continuous ranked probability score (CRPS), 
please consult Brier (1950) and Gneiting and Raftery (2007). 
 

Occupancy Non-zero Fit Cross-val Fit Cross-val Fit Cross-val Fit Cross-val
tupu summer 1,738 11,777 6.8 0.18 ZIP 4 19,995 0.92 0.75 0.60 0.63 21.6% 23.5% -11.5% -6.7% 0.08 0.09 0.08 0.09
mamu summer 1,625 5,604 3.4 0.16 ZINB 4 19,999 0.92 0.76 0.62 0.64 37.7% 32.4% -33.2% -24.7% 0.08 0.10 0.07 0.09
comu summer 6,533 293,713 45.0 0.64 ZINB 5 17,999 0.91 0.84 0.70 0.70 20.1% 27.1% 4.5% 12.0% 0.11 0.14 0.10 0.12
comu winter 405 6,516 16.1 0.33 ZIP 5 8,611 0.91 0.82 0.69 0.70 19.6% 23.9% -2.9% 8.3% 0.12 0.11 0.10 0.10
bfal summer 421 3,008 7.1 0.04 ZINB 5 15,215 0.96 0.70 0.41 0.44 12.1% 11.9% -11.1% -11.6% 0.03 0.02 0.03 0.02
bfal winter 87 162 1.9 0.07 ZIP 4 17,986 0.97 0.78 0.46 0.43 37.0% 37.4% -34.8% -33.1% 0.03 0.03 0.03 0.03
nofu summer 463 2,916 6.3 0.05 ZINB 4 17,733 0.97 0.75 0.57 0.61 15.9% 15.8% -11.3% -11.1% 0.02 0.02 0.02 0.02
pfsh summer 611 3,977 6.5 0.06 ZIP 4 17,962 0.96 0.65 0.39 0.43 22.1% 19.5% -12.5% -11.1% 0.04 0.03 0.03 0.03
sosh summer 2,586 249,380 96.4 0.27 ZINB 4 17,999 0.91 0.72 0.49 0.52 8.3% 8.3% 1.5% 1.5% 0.11 0.09 0.10 0.08

Prevalence

Best 
model 
type

Max. 
tree 

depth

No. 
boosting 
iterations

Rank R  
(non-zero)

AUCSpecies 
code Season

No. 
segments 

with 
sightings

No. 
individuals

Mean no. 
individuals per 
segment with 

sightings

Median absolute 
error (non-zero)

Median bias     
(non-zero)

Brier score 
(occupancy) CRPS

Gaussian rank 
correlation 
(non-zero)
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Figure 4: Long-term relative density (birds per sq. km) prediction map for Marbled Murrelet (Brachyramphus 
marmoratus) during the months of April to October. White cross-hatching represents areas of greater prediction 
uncertainty, where the coefficient of variation was greater than or equal to 0.8. Olympic Coast National Marine 
Sanctuary is designated by gray horizontal lines. 200, 500, and 1000 m isobath contours are shown as solid, 
large dashed, and small dashed gray lines, respectively. Observed density (birds per sq. km) is shown on the 
inset map. Prediction and observed density color gradient classes represent 5% quantile intervals calculated 
from predictions. 
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Figure 5: Long-term relative density (birds per sq. km) prediction maps for Marbled Murrelet (Brachyramphus 
marmoratus) during the months of April to October: a) 50% quantile of bootstrap (median), b) coefficient of 
variation, c) 5% quantile of bootstrap, d) 95% quantile of bootstrap. The legends for panels c and d are the same 
as for panel a. 
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Figure 6: Long-term relative density (birds per sq. km) prediction map for Tufted Puffin (Fratercula cirrhata) 
during the months of April to October. Olympic Coast National Marine Sanctuary is designated by gray 
horizontal lines. 200, 500, and 1000 m isobath contours are shown as solid, large dashed, and small dashed gray 
lines, respectively. Observed density (birds per sq. km) is shown on the inset map. Prediction and observed 
density color gradient classes represent 5% quantile intervals calculated from predictions. 
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Figure 7: Long-term relative density (birds per sq. km) prediction maps for Tufted Puffin (Fratercula cirrhata) 
during the months of April to October: a) 50% quantile of bootstrap (median), b) coefficient of variation, c) 5% 
quantile of bootstrap, d) 95% quantile of bootstrap. The legends for panels c and d are the same as for panel a. 
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Figure 8: Long-term relative density (birds per sq. km) prediction map for Common Murre (Uria aalge) during 
the months of April to October. White cross-hatching represents areas of greater prediction uncertainty, where 
the coefficient of variation was greater than or equal to 0.8. Olympic Coast National Marine Sanctuary is 
designated by gray horizontal lines. 200, 500, and 1000 m isobath contours are shown as solid, large dashed, 
and small dashed gray lines, respectively. Observed density (birds per sq. km) is shown on the inset map. 
Prediction and observed density color gradient classes represent 5% quantile intervals calculated from 
predictions. 
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Figure 9: Long-term relative density (birds per sq. km) prediction maps for Common Murre (Uria aalge) during 
the months of April to October: a) 50% quantile of bootstrap (median), b) coefficient of variation, c) 5% 
quantile of bootstrap, d) 95% quantile of bootstrap. The legends for panels c and d are the same as for panel a. 
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Figure 10: Long-term relative density (birds per sq. km) prediction map for Common Murre (Uria aalge) during 
the months of November to March. White cross-hatching represents areas of greater prediction uncertainty, 
where the coefficient of variation was greater than or equal to 0.8. Olympic Coast National Marine Sanctuary is 
designated by gray horizontal lines. 200, 500, and 1000 m isobath contours are shown as solid, large dashed, 
and small dashed gray lines, respectively. Observed density (birds per sq. km) is shown on the inset map. 
Prediction and observed density color gradient classes represent 5% quantile intervals calculated from 
predictions. 
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Figure 11: Long-term relative density (birds per sq. km) prediction maps for Common Murre (Uria aalge) 
during the months of November to March: a) 50% quantile of bootstrap (median), b) coefficient of variation, c) 
5% quantile of bootstrap, d) 95% quantile of bootstrap. The legends for panels c and d are the same as for panel 
a. 
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Figure 12: Long-term relative density (birds per sq. km) prediction map for Black-footed Albatross 
(Phoebastria nigripes) during the months of April to October. White cross-hatching represents areas of greater 
prediction uncertainty, where the coefficient of variation was greater than or equal to 0.8. Olympic Coast 
National Marine Sanctuary is designated by gray horizontal lines. 200, 500, and 1000 m isobath contours are 
shown as solid, large dashed, and small dashed gray lines, respectively. Observed density (birds per sq. km) is 
shown on the inset map. Prediction and observed density color gradient classes represent 5% quantile intervals 
calculated from predictions. 
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Figure 13: Long-term relative density (birds per sq. km) prediction maps for Black-footed Albatross 
(Phoebastria nigripes) during the months of April to October: a) 50% quantile of bootstrap (median), b) 
coefficient of variation, c) 5% quantile of bootstrap, d) 95% quantile of bootstrap. The legends for panels c and 
d are the same as for panel a. 
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Figure 14: Long-term relative density (birds per sq. km) prediction map for Black-footed Albatross 
(Phoebastria nigripes) during the months of November to March. White cross-hatching represents areas of 
greater prediction uncertainty, where the coefficient of variation was greater than or equal to 0.8. Olympic 
Coast National Marine Sanctuary is designated by gray horizontal lines. 200, 500, and 1000 m isobath contours 
are shown as solid, large dashed, and small dashed gray lines, respectively. Observed density (birds per sq. km) 
is shown on the inset map. Prediction and observed density color gradient classes represent 5% quantile 
intervals calculated from predictions. 
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Figure 15: Long-term relative density (birds per sq. km) prediction maps for Black-footed Albatross 
(Phoebastria nigripes) during the months of November to March: a) 50% quantile of bootstrap (median), b) 
coefficient of variation, c) 5% quantile of bootstrap, d) 95% quantile of bootstrap. The legends for panels c and 
d are the same as for panel a. 
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Figure 16: Long-term relative density (birds per sq. km) prediction map for Nothern Fulmar (Fulmarus 
glacialis) during the months of April to October. White cross-hatching represents areas of greater prediction 
uncertainty, where the coefficient of variation was greater than or equal to 0.8. Olympic Coast National Marine 
Sanctuary is designated by gray horizontal lines. 200, 500, and 1000 m isobath contours are shown as solid, 
large dashed, and small dashed gray lines, respectively. Observed density (birds per sq. km) is shown on the 
inset map. Prediction and observed density color gradient classes represent 5% quantile intervals calculated 
from predictions. 
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Figure 17: Long-term relative density (birds per sq. km) prediction maps for Nothern Fulmar (Fulmarus 
glacialis) during the months of April to October: a) 50% quantile of bootstrap (median), b) coefficient of 
variation, c) 5% quantile of bootstrap, d) 95% quantile of bootstrap. The legends for panels c and d are the same 
as for panel a. 
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Figure 18: Long-term relative density (birds per sq. km) prediction map for Pink-footed Shearwater (Puffinus 
creatopus) during the months of April to October. White cross-hatching represents areas of greater prediction 
uncertainty, where the coefficient of variation was greater than or equal to 0.8. Olympic Coast National Marine 
Sanctuary is designated by gray horizontal lines. 200, 500, and 1000 m isobath contours are shown as solid, 
large dashed, and small dashed gray lines, respectively. Observed density (birds per sq. km) is shown on the 
inset map. Prediction and observed density color gradient classes represent 5% quantile intervals calculated 
from predictions. 
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Figure 19: Long-term relative density (birds per sq. km) prediction maps for Pink-footed Shearwater (Puffinus 
creatopus) during the months of April to October: a) 50% quantile of bootstrap (median), b) coefficient of 
variation, c) 5% quantile of bootstrap, d) 95% quantile of bootstrap. The legends for panels c and d are the same 
as for panel a. 
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Figure 20: Long-term relative density (birds per sq. km) prediction map for Sooty Shearwater (Puffinus griseus) 
during the months of April to October. White cross-hatching represents areas of greater prediction uncertainty, 
where the coefficient of variation was greater than or equal to 0.8. Olympic Coast National Marine Sanctuary is 
designated by gray horizontal lines. 200, 500, and 1000 m isobath contours are shown as solid, large dashed, 
and small dashed gray lines, respectively. Observed density (birds per sq. km) is shown on the inset map. 
Prediction and observed density color gradient classes represent 5% quantile intervals calculated from 
predictions. 
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Figure 21: Long-term relative density (birds per sq. km) prediction maps for Sooty Shearwater (Puffinus 
griseus) during the months of April to October: a) 50% quantile of bootstrap (median), b) coefficient of 
variation, c) 5% quantile of bootstrap, d) 95% quantile of bootstrap. The legends for panels c and d are the same 
as for panel a. 
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Discussion 
The spatial models and associated maps and tables presented in this report provide information on the long-term 
spatial distribution of seven seabird species (Marbled Murrelet, Tufted Puffin, Common Murre, Black-footed 
Albatross, Northern Fulmar, Pink-footed Shearwater and Sooty Shearwater) from April to October, and two 
species (Common Murre and Black-footed Albatross) from November to March offshore of Washington. The 
models and maps are intended to distinguish persistent areas of high relative density from low relative density. 
It is important to contrast this approach with models and maps which address absolute seabird abundance, 
which require additional parameters such as probability of species detection. This work was completed to 
support marine spatial planning by the state of Washington; however, these data will benefit other organizations 
and other purposes including assessments of marine sanctuary condition, ecosystem health, coastal hazard 
impacts, and climate change. 
 
All models show good to excellent performance based on model diagnostics and expert review; however users 
should not assume unqualified accuracy. A model, even a very good one, cannot be a perfect fit in all locations 
or times. In order to understand if specific points of deficiency exist and where they are located, we emphasize 
that density maps should be interpreted alongside additional supporting data. In particular, when using these 
data to make management decisions, we recommend: 
 

• Evaluating model performance diagnostics to better understand the model fit and uncertainty,  
• Evaluating spatial and temporal patterns of observations and residuals, 
• Interpreting density maps alongside maps of spatially-explicit model uncertainty, represented in this 

report by the spatially-explicit coefficient of variation, and 
• Confirming model findings using independent data, including expert opinion or other seabird 

observations. 
 
This report provides information to support most of these recommendations. Model performance diagnostics are 
provided in Table 7, distributions of observations and residuals are in Table 3 and Appendix D, maps of 
spatially-explicit model uncertainty are provided in Figures 4 through 21, and this report includes expert 
reviews. We did not review model results against independent observation data and recommend these 
comparisons for follow up work. Menza et al. (2014) provide a list of seabird survey programs which offer 
independent data in the study area.  
 
There are also several caveats for supporting data: 
 

• Given the use of zero-inflated distributions, which are inherently complex, certain diagnostics (e.g., 
residual plots) may be different than when used with more common distributions.  

• Any biases in species detection, observed habitats, or temporal periods that are inherent in observation 
data are propagated into the model results.  

• Expert reviews were focused on coarse scale distributional patterns. Fine-scale expert review will be 
required for site-specific usage. 

 
There are two modeling concepts that would benefit from further research. First, the development of predictive 
models raises many considerations concerning the appropriate spatial and temporal scales of assessment. These 
models used a climatological approach, where observations are linked to climatological covariates representing 
long-term environmental patterns (i.e., climatologies give coarse-scale temporal associations). An alternative 
approach is to link seabird observations to dynamic, and possibly fine-scale, contemporaneous covariates. 
Several contributors noted that there are important differences in these two approaches, which may affect model 
accuracy and predicted spatial patterns. There is an ongoing discussion among contributors, and other academic 
partners to compare results from the two approaches, but current research suggests that neither approach is 
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clearly superior to the other, and which approach is used should depend on the objectives of the work. Patrick 
Halpin at Duke University Marine Lab has forthcoming research on the topic (Brian Kinlan, pers. comm.). 
Second, the impact of heterogeneous survey effort is assumed to affect results. We present maps of survey 
effort and tables of effort categorized by distance to shore, year, and month, but do not address the precise 
impact of effort on predicted patterns of relative density. It is reasonable to assume that model diagnostic 
metrics are less accurate when and where there is less survey effort, but one should not assume model 
predictions are worse in the corresponding areas. The impact of heterogeneous survey effort is best evaluated 
using independent data. 
 
An issue related to both of these modeling concepts is the impact of grouping temporally resolved sightings into 
seasons. Although the seasonal divisions were helpful to separate distinct life history patterns for most species, 
grouping sightings has the potential to mask important intra-seasonal changes in distribution, especially if they 
are out of sync with the oceanographic patterns used to partition seasons in this report. For instance, if a species 
is breeding from April to July and then feeds offshore from August to October, separate models created for the 
breeding and feeding periods will likely be better than a single model during the upwelling season. We flagged 
predictions of Black-footed Albatross in the downwelling season for a similar reason (see species commentary 
in model results). Evaluating plots of average density per month in Appendix D against known life history 
patterns can indicate if seasons are unlikely to represent expected species seasonal patterns. 
 
The maps and models in this report are valuable for decision makers today and into the future, but they should 
be considered as part of an adaptive management strategy. New data sources may become available, new 
modeling approaches will improve fit of relationships between seabird observations and covariates, and new 
management objectives will dictate the need for new outputs. Over the next three years we know of two 
additional projects which will build off of this work. From 2015 to 2018, NCCOS and many other contributors 
of this modeling work will expand seabird models to the entire U.S. West Coast in support of the Bureau of 
Ocean Energy Management and in 2015 NCCOS will develop predictive models and maps for marine mammals 
in support of Washington and the Coastal Zone Management Program.  
 
To encourage adaptive management, and integrate environmental change in a timely manner, there is 
tremendous value in at-sea observation field program investments. These field programs are immensely helpful 
to understand population-level distributions across many spatial scales. 
 
Notwithstanding the caveats listed in this discussion, the maps presented here represent the first attempt to 
combine the eight seabird survey programs listed in Table 2, a substantial combination of nearshore and 
offshore survey effort. As far as we are aware, the compilation prepared for this report is the largest synthesis of 
recent seabird observations in the study area, in terms of both number of observations and number of programs 
combined. As such, these maps represent an important step towards understanding the long-term spatial 
distributions of the seven selected seabird species, design of effective spatial conservation and sustainable use 
of Washington’s offshore resources. 
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Appendix A: Seabird survey program descriptions 

Dataset Name 
Data 
Collector(s) Years Geographic Coverage Reference 

Pacific Continental Shelf 
Environmental 
Assessment (PaCSEA) 

USGS WERC, 
BOEM 2011-12 

Grays Harbor to Columbia 
River; Oregon and northern 
California; shore to 
continental slope 

Adams et al. 2014 

ORegon, CAlifornia, and 
WAshington Line-transect 
Expedition (ORCAWALE) 
marine mammal survey 

NOAA SWFSC 2001, 
2008 

US-Mexico to US-Canada 
border and seaward to 300 
nmi 

Barlow et al. 2010 

Collaborative Survey of 
Cetacean Abundance and 
the Pelagic Ecosystem 
(CSCAPE) 

NOAA SWFSC 2005 

US-Mexico to US-Canada 
border and seaward to 300 
nmi; but finer scale 
information was collected 
in National Marine 
Sanctuaries 

Barlow et al. 2010 

Seasonal Olympic Coast 
National Marine 
Sanctuary Surveys 

NOAA OCNMS 2006-12 Pelagic OCNMS; La Push to 
Juan de Fuca Canyon 

Online report: 
http://olympiccoast.noaa.gov/sc
ience/surveyscruises/2012/mari
nebirds.html 

Annual Olympic Coast 
National Marine 
Sanctuary Surveys 

NOAA OCNMS 1995-
2007 

Grays Harbor to Cape 
Flattery; 20-500 fathoms 

Online report: 
http://olympiccoast.noaa.gov/sc
ience/surveyscruises/2011/seabi
rd_density.html 

NWFSC Northern 
California Current Seabird 
Surveys 

NOAA NWFSC 
(Conservation 
Biology, Fish 
Ecology) 

2008, 
2009, 
2012 

Depends on location of 
Southern Resident Killer 
Whales; ranges from San 
Francisco, CA to Strait of 
Juan de Fuca, WA 

Hanson et al. 2010 

Northwest Forest 
Plan Marbled Murrelet Ef
fectiveness 
Monitoring Program 

USFS, USFWS, 
WDFW 2000-13 

Outer Washington coast; 
shore to 8 km; also Salish 
Sea, Oregon, and California 
to San Francisco 

Falxa et al. 2014 

Pacific Coast Winter 
Seaduck Survey 

Sea Duck Joint 
Venture, 
WDFW 

2011 

Cape Flattery to OR-CA 
border; shore to either 20 
fathoms (36.58 m) or 3 nmi 
(5056 km), whichever was 
greater 

Contact: Tim Bowman (USFWS) 

Bonneville power plant 
seabird surveys 

NOAA NWFSC 
(Fish Ecology) 2008-12 Coastal WA on the 

continental shelf edge Zamon et al. 2014 
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Appendix B: Processing steps for environmental predictors 
Climate indices 
The North Pacific Gyre Oscillation Index, Pacific Decadal Oscillation Index, and upwelling index were 
processed by calculating a three-month moving average (using the values of the current month plus the previous 
two months) prior to analyses. A three-month moving average was not calculated for Multivariate El Niño-
Southern Oscillation Index, as these data had already been ‘smoothed’ using a two-month moving average prior 
to obtaining them. For each climate index, two values were included as predictor variables: the value for the 
month and year of a given transect segment and the value for the same month one year previous (i.e., 12 month 
lag). 
 
Seasonal mesoscale eddy probabilities 
Oceanic eddies are large circular currents with scales ranging from 10s to 100s of kilometers. Eddies can 
transfer nutrients across water masses and elevate primary production in upwelling cores (McGillicuddy et al. 
1998), retain zooplankton (Weibe et al. 1976), and enhance top predator densities (Cotté et al. 2007, Burger 
2006, Yen et al. 2006). Rotational patterns of mesoscale eddies are cyclonic or anticyclonic. Centers of 
anticyclonic eddies are concave down and are referred to as downwelling eddies and warm-core rings. Cyclonic 
eddies exhibit an opposite rotational pattern with concave-up (higher) centers and are referred to as upwelling 
eddies and cold-core rings.  
 
Oceanic eddy climatologies were derived from a 21-year dataset (1993-2014) of daily AVISO sea surface 
height (SSH) imagery, specifically Mean Absolute Dynamic Topography (MADT). The AVISO website 
(http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt.html) provides 
additional information for MADT and geospatial data layers in NetCDF format. The spatial resolution of 
AVISO SSH data is 0.25 degrees or approximately 25 km. The Okubo-Weiss Algorithm was applied to MADT 
using the Marine Geospatial Ecology Tools (MGET) geoprocessing ArcGIS toolbox (Roberts et al. 2010; 
http://mgel.env.duke.edu/mget) to identify anticyclonic and cyclonic eddies. The Okubo-Weiss algorithm 
parameter, “Minimum area-to-perimeter ratio of eddy cores” was modified to 0.45 in order to select for circular 
eddies; however, all other parameters remained set at default levels (Okubo-Weiss parameter threshold type = -
0.2; Minimum area of eddy cores = 4; Minimum duration of eddy cores = 28 days). 
 
Eddy climatologies are probability layers that estimate the probability of anticyclonic or cyclonic eddies in two 
seasons: April to October and November to March. Eddy probabilities were calculated at coincident pixels 
using the native resolution of MADT by summing the number of times each pixel was classified as an eddy, 
divided by the number of pixels with SSH data at the scale of the pixel frame. 
 
Seasonal frontal probabilities 
Hydrographic fronts manifest across a wide variety of spatial and temporal scales and some may facilitate 
trophic energy transfer, where high concentrations of prey associated with fronts attract marine predators 
searching for food (Schneider 1990, Hoefer 2000, Olson et al. 2000).  
 
A 13-year dataset of monthly sea surface temperature front probability composites (accessed from 
http://coastwatch.pfeg.noaa.gov/erddap/griddap/erdGAtfntmday.html) was used to create seasonal climatologies 
for two modeled time periods: April to October and November to March. The CoastWatch Oceanic Front 
Probability Index measures the probability of sea surface temperature front formation based on data from 
NOAA's GOES satellites. For each time period, front probabilities layers were averaged using the native 
resolution of the data (0.05 degrees; ~5.5 km) in order to calculate each seasonal climatological mean.  
  

http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt.html
http://mgel.env.duke.edu/mget
http://coastwatch.pfeg.noaa.gov/erddap/griddap/erdGAtfntmday.html
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Bathymetry 
Seafloor topography has strong direct effects on marine ecosystems by steering the flow field and providing 
habitat for marine organisms. Discrete topographic features are important spatial predictors of seabird 
distribution and abundance, and influence foraging distributions of seabirds across a variety of spatial scales 
(e.g., continental shelf breaks / shelf slopes, submarine canyons, ledges, and shoals; Croll et al. 1998, Yen et al. 
2004, Nur et al. 2011). 
 
Depth, topographic slope, and planform and profile curvature data were taken from MARSPEC, a high-
resolution GIS database of ocean climate layers intended for marine ecological niche modeling and other 
applications in marine spatial ecology (Sbrocco and Barber 2013; http://www.marspec.org/). MARSPEC uses 
the SRTM30 Plus Bathymetry version 6.0 data set for bathymetry (accessed from 
http://topex.ucsd.edu/WWW_html/srtm30_plus.html). Bathymetric slope was measured in degrees ranging from 
0º (flat surface) to 90º (vertical slope). Planform and profile curvature, derivatives of bathymetry, were 
generated from bathymetric data and the Surface tools within the Spatial Analyst toolbox in ArcGIS 9.3.1. 
Curvature layers are used to infer flow-field dynamics. Positive/negative values of planform curvature may 
indicate divergent/convergent flow, whereas, positive/negative values of profile curvature may indicate 
acceleration/deceleration of the flow field (Sbrocco and Barber 2013).  
 
The bathymetric position index (BPI) is a measure of depth relative to a surrounding neighborhood. The 
bathymetric position index was calculated for 2 spatial scales (3 km and 20 km) to capture topographic features 
and complexity of the seafloor (e.g., flat bottom, trough, and steep wall) at moderate and coarse spatial scales. 
BPI for both scales was calculated with the Spatial Analyst toolbox in ArcGIS 10.2 using an annulus 
neighborhood with an inner radius of 1 cell and outer radius approximately half the corresponding scale. 
 
Seasonal salinity 
Monthly sea surface salinity climatologies were extracted from the MARSPEC monthly climatological dataset 
(Sbrocco and Barber 2013). The average of monthly climatologies from April to October and November to 
March were used to produce two seasonal climatologies.  
 
Seasonal sea surface temperature 
Sea surface temperature data was derived from Aqua MODIS, processed to a level 3 monthly composite for 
years 2002-12. Monthly composites were averaged into two seasonal climatologies: April to October and 
November to March. 
 
Seasonal chlorophyll a concentration 
Chlorophyll a data was derived from Aqua MODIS, processed to a level 3 monthly composite for years 2002-
12. Monthly composites were averaged to create two seasonal climatologies: April to October and November to 
March. 
 
Frequency of chlorophyll peaks index (FCPI) 
Chlorophyll a data for this climatology was derived from the SeaWIFS satellite, unlike the mean climatologies 
derived from the MODIS sensor. FCPI is a 9-year index that represents chlorophyll a intensity above a modeled 
mean of chlorophyll a concentration across all months (January 1998 through December 2006). The index is not 
seasonal, so the same climatological values are used for both upwelling and downwelling seasons. See Suryan 
et al. 2012 for details. 
 
Distance to 200 m isobath 
The 200 m isobath was derived from the MARSPEC depth layer and distance to the 200 m isobath was 
calculated using the Spatial Analyst toolbox in ArcGIS 10.2 across the entire study area at a resolution of 100 
m. 

http://www.marspec.org/
http://topex.ucsd.edu/WWW_html/srtm30_plus.html
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Distance to colonies and critical habitat 
Locations of Common Murre and Tufted Puffin colonies were extracted from the Washington Seabird Catalog 
and converted to shapefiles as points. The locations of Marbled Murrelet nesting habitat were taken from the 
Final Revised Marbled Murrelet Critical Habitat Designation which can be downloaded from the USFWS 
Washington Fish and Wildlife Office (http://www.fws.gov/wafwo/mamu.html). Marbled Murrelets nest inland 
in forests that are generally characterized by large trees with large branches or deformities for use as nest 
platforms. Distance to colonies and critical habitat were calculated using the Spatial Analyst toolbox in ArcGIS 
10.
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Appendix C: Model performance metrics (full model assemblage) 
Performance metrics for all models of each species-season combination. Models are sorted in descending order of performance in terms of the 
thresholded continuous rank probability score (CRPS) from cross-validation tuning of the number of boosting iterations (column marked with *). The 
selected “best” model is in bold font. All model performance metrics were calculated on the full dataset, except columns labeled “Cross-val,” which denote 
statistics calculated separately on cross-validation data. AUC values were calculated as the area under the relevant ROC curve. Rank R refers to Spearman’s rank 
correlation coefficient (Spearman’s rho statistic) for the observed vs. predicted count. Median absolute [residual] error (non-zero) and median [residual] bias (non-
zero) were standardized by dividing by mean no. individuals per segment with sightings and multiplying by 100, so that values shown represent percentages of the 
mean number of individuals observed per segment on segments with at least one sighting. For details on the Brier score and continuous ranked probability score 
(CRPS), please consult Brier (1950) and Gneiting and Raftery (2007). Note that risk is not directly comparable across model types (e.g., ZIP vs. ZINB). 

Occupancy Non-zero Fit Cross-val Fit Cross-val Fit Cross-val Fit Cross-val*
mamu summer ZINB 4 19,999 0.92 0.76 0.62 0.64 37.7% 32.4% -33.2% -24.7% 0.080 0.098 0.073 0.089 -5287 2717
mamu summer ZINB 5 19,999 0.92 0.76 0.62 0.64 38.0% 32.2% -33.2% -24.9% 0.081 0.098 0.074 0.089 -5317 2715
mamu summer ZIP 5 20,000 0.92 0.67 0.46 0.50 34.7% 32.2% -29.9% -23.0% 0.082 0.097 0.075 0.089 -5910 2933
mamu summer ZIP 4 20,000 0.92 0.66 0.45 0.49 34.5% 32.0% -29.5% -23.2% 0.082 0.098 0.075 0.090 -5956 2934
tupu summer ZIP 4 19,995 0.92 0.75 0.60 0.63 21.6% 23.5% -11.5% -6.7% 0.084 0.094 0.077 0.086 -7982 4241
tupu summer ZIP 5 18,998 0.91 0.74 0.57 0.61 22.8% 25.2% -11.0% -6.9% 0.089 0.102 0.081 0.093 -8480 4426
tupu summer ZINB 5 20,000 0.91 0.77 0.62 0.63 22.9% 23.4% -12.7% -9.5% 0.091 0.106 0.081 0.095 -6404 3184
tupu summer ZINB 4 19,999 0.91 0.77 0.62 0.64 22.0% 23.4% -12.6% -9.4% 0.090 0.106 0.081 0.095 -6403 3200
comu summer ZINB 5 17,999 0.91 0.84 0.70 0.70 20.1% 27.1% 4.5% 12.0% 0.113 0.137 0.102 0.124 -29549 12673
comu summer ZINB 4 17,998 0.91 0.84 0.70 0.70 20.3% 27.0% 4.9% 11.9% 0.113 0.137 0.102 0.124 -29552 12684
comu summer ZIP 5 17,953 0.92 0.86 0.74 0.74 16.5% 19.3% 3.0% 8.6% 0.107 0.124 0.107 0.130 -116272 59537
comu summer ZIP 4 17,961 0.92 0.86 0.74 0.75 16.0% 19.5% 2.6% 8.4% 0.107 0.125 0.106 0.131 -115756 62410
comu winter ZIP 5 8,611 0.91 0.82 0.69 0.70 19.6% 23.9% -2.9% 8.3% 0.118 0.110 0.103 0.098 -3479 1560
comu winter ZIP 4 8,954 0.91 0.82 0.69 0.70 19.2% 23.4% -2.2% 6.6% 0.117 0.110 0.102 0.100 -3376 1629
comu winter ZINB 5 17,668 0.88 0.84 0.71 0.72 18.4% 17.9% -4.5% 0.4% 0.136 0.123 0.114 0.101 -1730 534
comu winter ZINB 4 17,971 0.88 0.84 0.71 0.72 19.7% 19.0% -4.7% 0.4% 0.135 0.126 0.113 0.104 -1727 536
bfal summer ZINB 5 15,215 0.96 0.70 0.41 0.44 12.1% 11.9% -11.1% -11.6% 0.027 0.023 0.026 0.022 -1497 546
bfal summer ZINB 4 15,379 0.96 0.71 0.43 0.45 12.2% 12.0% -11.6% -11.6% 0.027 0.023 0.026 0.022 -1506 540
bfal summer ZIP 4 12,615 0.91 0.59 0.16 0.18 13.1% 12.3% -12.4% -11.9% 0.029 0.024 0.028 0.023 -2677 889
bfal summer ZIP 5 3,089 0.90 0.65 0.31 0.34 12.6% 12.8% -11.8% -11.6% 0.028 0.025 0.028 0.024 -4731 2798
bfal winter ZIP 4 17,986 0.97 0.78 0.46 0.43 37.0% 37.4% -34.8% -33.1% 0.032 0.028 0.031 0.027 -224 69
bfal winter ZIP 5 17,952 0.97 0.76 0.43 0.42 35.2% 43.6% -31.8% -37.1% 0.032 0.029 0.031 0.028 -224 71
bfal winter ZINB 4 16,743 0.97 0.83 0.57 0.54 39.7% 47.7% -35.6% -38.0% 0.033 0.029 0.032 0.028 -232 70
bfal winter ZINB 5 16,181 0.97 0.83 0.55 0.51 41.5% 48.4% -38.4% -37.7% 0.034 0.030 0.033 0.029 -238 74
nofu summer ZINB 4 17,733 0.97 0.75 0.57 0.61 15.9% 15.8% -11.3% -11.1% 0.022 0.019 0.022 0.018 -1645 522
nofu summer ZINB 5 17,969 0.97 0.75 0.56 0.59 16.3% 16.0% -11.7% -11.5% 0.022 0.019 0.022 0.018 -1654 525
nofu summer ZIP 5 17,970 0.96 0.72 0.50 0.56 19.5% 17.6% -13.3% -13.9% 0.022 0.019 0.022 0.018 -2259 1103
nofu summer ZIP 4 16,333 0.96 0.71 0.48 0.54 19.1% 16.5% -13.2% -13.6% 0.022 0.019 0.022 0.018 -2408 1089
pfsh summer ZIP 4 17,962 0.96 0.65 0.39 0.43 22.1% 19.5% -12.5% -11.1% 0.036 0.026 0.035 0.025 -4084 1365
pfsh summer ZIP 5 16,509 0.96 0.66 0.40 0.44 21.4% 20.1% -12.1% -10.5% 0.036 0.027 0.035 0.026 -4046 1416
pfsh summer ZINB 5 17,997 0.96 0.68 0.45 0.47 23.7% 20.2% -13.2% -12.3% 0.036 0.027 0.035 0.026 -2558 757
pfsh summer ZINB 4 17,991 0.96 0.67 0.43 0.45 22.0% 20.9% -13.3% -12.8% 0.036 0.027 0.035 0.026 -2567 758
sosh summer ZINB 4 17,999 0.91 0.72 0.49 0.52 8.3% 8.3% 1.5% 1.5% 0.110 0.092 0.098 0.081 -12882 4304
sosh summer ZINB 5 17,999 0.91 0.72 0.51 0.53 8.0% 8.2% 1.3% 1.5% 0.110 0.092 0.098 0.081 -12876 4293
sosh summer ZIP 5 14,643 0.88 0.72 0.51 0.56 6.2% 6.1% 1.2% 1.2% 0.124 0.103 0.113 0.093 -110921 59066
sosh summer ZIP 4 14,035 0.88 0.71 0.51 0.55 6.5% 6.3% 1.3% 1.2% 0.125 0.103 0.114 0.093 -109763 52523

Species 
code Season

Model 
type

Max. 
tree 

depth

No. 
boosting 
iterations

Brier score 
(occupancy) CRPS Log-

likelihood
Risk

(cross-val)
AUC Rank R  

(non-zero)

Gaussian rank 
correlation 
(non-zero)

Median absolute 
error (non-zero)

Median bias     
(non-zero)
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Appendix D: Select marginal and residual plots 
Figures D1-9: Select marginal and residual plots for the final selected model of each species-season 
combination. Panels from left to right, top to bottom are: 1) observed monthly average density (birds per sq. 
km); 2) marginal plot of logit(1 − 𝑝𝑝) vs. Julian day; 3) marginal plot of log (𝜇𝜇) vs. Julian day; 4) blank; 5) 
marginal plot of logit(1 − 𝑝𝑝) vs. year; 6) marginal plot of log (𝜇𝜇) vs. year; 7) scatterplot of Pearson residuals vs. 
latitude; 8) scatterplot of Pearson residuals vs. longitude; 9) scatterplot of Pearson residuals vs. date. Marginal 
plots show patterns in the functional relationship between transformed versions of the zero-inflation and count 
model components and Julian day and year, after accounting for the effects of all other predictors in the model. 
Gray shading represents +/- 1 standard deviation from the mean. Absent marginal plots indicate either Julian 
day or year was not selected as an important predictor in the final model. 
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Figure D1: Marginal and residual plots for Marbled Murrelet (Brachyramphus marmoratus) during the months 
of April to October. 
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Figure D2: Marginal and residual plots for Tufted Puffin (Fratercula cirrhata) during the months of April to 
October. 
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Figure D3: Marginal and residual plots for Common Murre (Uria aalge) during the months of April to October. 
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Figure D4: Marginal and residual plots for Common Murre (Uria aalge) during the months of November to 
March. 
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Figure D5: Marginal and residual plots for Black-footed Albatross (Phoebastria nigripes) during the months of 
April to October. 
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Figure D6: Marginal and residual plots for Black-footed Albatross (Phoebastria nigripes) during the months of 
November to March. 
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Figure D7: Marginal and residual plots for Northern Fulmar (Fulmarus glacialis) during the months of April to 
October. 
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Figure D8: Marginal and residual plots for Pink-footed Shearwater (Puffinus creatopus) during the months of 
April to October. 
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Figure D9: Marginal and residual plots for Sooty Shearwater (Puffinus griseus) during the months of April to 
October. 
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Appendix E: Variable importance figures 
Figure E1: Mean relative importance of predictor variables for the months of April to October, calculated by 
averaging across species within the zero-inflation (𝑝𝑝) and count (𝜇𝜇) components of the selected models. 
 

 
 
 
Figure E2: Mean relative importance of predictor variables for the months of November to March, calculated by 
averaging across species within the zero-inflation (𝑝𝑝) and count (𝜇𝜇) components of the selected models. 
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Figure E3: Relative importance of predictor variables for the selected model of each species during the months 
of April to October. Empty cells represent predictors that were not modeled for a given species. When all cells 
of the dispersion (ZINB) model component are empty for a given species, the final fitted model assumed a zero-
inflated Poisson distribution. 
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Figure E4: Relative importance of predictor variables for the selected model of each species during the months 
of November to March. Empty cells represent predictors that were not modeled for a given species. When all 
cells of the dispersion (ZINB) model component are empty for a given species, the final fitted model assumed a 
zero-inflated Poisson distribution. 
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